CIS 700/002 : Special Topics : A Large-Scale Analysis of the Security of Embedded Firmwares

Teng Zhang

CIS 700/002: Security of EMBS/CPS/IoT Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania

Feb 17 2017

Introduction

- Firmware: software embedded in the hardware device
 - bugs and misconfigurations
 - not updated
 - bad security reputation
- This paper presents a horizontal, large-scale analysis of security of firmware images
 - manual analysis is slow and does not scale well
 - the same vulnerability may be present in different devices or even in different types of devices
 - introduced by the same development or integration vendors
 - global understanding of security of embedded systems

Methodology

- Static analysis
 - scales better
 - no need to require access to the physical devices
- Process
 - collection of firmware images
 - implementation of a distributed architecture to unpack and run static analysis on the collected firmware images
 - implementation of correlation engine to compare and find similarities among objects collected
 - "propagate" vulnerabilities

Challenges

- Building a representative dataset
 - the embedded systems environment is heterogeneous
 - lack of centralized points of collection makes it difficult to gather a large and triaged dataset
- Firmware identification
 - formats are diverse
 - hard to extract meta data
- Unpacking and custom formats
 - locating and extracting important functional blocks from compressed images
 - monolithic images are most challenging
 - the bootloader, the operating, system kernel, the applications, and other resources are combined together in a single memory image

Challenges(cont.)

- Scalability and computational limits
 - correlating information across multiple images
 - one-to-one comparison of each pair of unpacked files
 - use fuzzy hash to compare
 - time-consuming even distributed architectures are used
- Results confirmation
 - possible vulnerabilities are found through static analysis but hard to test
 - need tedious manual work

Architecture

Figure 1: Architecture of the entire system.

Firmware acquisition and storage

- Two ways of collecting images
 - web crawler
 - website for user submission
- web crawler
 - initialize crawler with well-known manufacturers
 - use public FTP indexing engines to search for files with keywords related to firmware images
 - use Google Custom Search Engines (GCSE) to create customized search engines

Unpacking and analysis

- Unpacking Frameworks
 - Binary Analysis Toolkit (BAT) and its extension is

used	Our Plugins	Unpackers		OS/Arch	Passwords/Keys		Entropy	Others []
	Our latform			Standar	d BAT		Ou Exte	r Patches and nsions to BAT
	ш		Distributed Platform Glue Code					

Figure 2: Architecture of a single worker node.

- Password Hash Cracking
 - John The Ripper is used to crack password
 - Run on GPU machines
- Parallelizing the Unpacking and Analysis

Correlation Engine

- Find similarities between different firmware images
- Comparison is made along four different dimensions
 - shared credential
 - shared self-signed certificates
 - common keywords
 - fuzzy hashes

Correlation Engine(cont.)

- Hard coded passwords and self-signed certificates exist in the firmware
 - hint for the strong connection between firmware images
 - CCTV systems from two different vendors have the same default non-trivial password
- Keywords are specific strings extracted by static analysis
 - common backdoor functionalities
 - common compilation and SDK paths
 - cluster images of different devices

Correlation Engine(cont.)

- Fuzzy hashes
 - ability to compare two distinctly different items and determine a fundamental level of similarity between the two
- Engine computes both *ssdeep* and *sdhash* to tell the similarities between files

Data Enrichment

- Extend the knowledge base about firmware images
- Extract info from firmware
 - <title> tag of web pages
 - authentication realms of web servers
- Correlate SSL certificates
 - find SSL certificates in the firmware
 - compare with certificates collected by ZMap
 - ZMap is a powerful tool for internet-scale scan

Dataset and Result

- Overall statistics
 - 32,356 images
 - 63% ARM devices, 7% MIPs devices
 - 86% Linux OS

Dataset and Result(cont.)

- Password Hashes
 - /etc/passwd and /etc/shadow are targets of attackers
 - 100 distinct password hashes covers 681 distinct firmware images belonging to 27 venders
 - 58 of them are recovered belonging to 538 firmware images

Dataset and Result(cont.)

- Certificates and Private RSA Keys Statistics
 - many devices contains self-signed certificates and private keys
 - 41 self-signed certificates with RSA keys were obtained
 - 35,000 devices use these certificates
 - both certificates and keys should be regenerated or the https would be broken

Dataset and Result(cont.)

- Packaging Outdated and Vulnerable Software
 - firmware may rely on third-party software which may be outdated
- Building images as root
 - host info may be leaked
- Web Servers Configuration
 - 81 % web servers were configured to run as a privileged user

Case Studies

- Backdoors
 - some backdoors can be detected using simple keyword match
 - one backdoor was first discovered by string search
 - correlation engine is then used to find the same backdoor for two different types of devices
 - These devices rely on the SoC from the same vendor

Case Studies(cont.)

Private SSL Keys

Figure 4: Correlation engine and shared self-signed certificates clustering.

Case Studies(cont.)

- XSS in WiFi Enabled SD Cards
 - Some SD cards have wifi interface with web server
 - A Cross Site Scripting (XSS) vulnerability was found in one of these web interfaces
 - Correlation engine was used to find the same vulnerability on other files or images

Conclusion

- Large-scale analysis of firmware images is useful
 - find the same vulnerabilities from different images or even different vendors
- Firmware images are far from secure
 - bad practices repeatedly appear
 - both manufactures and users should pay much more attention

Related Papers

- Costin, Andrei, Apostolis Zarras, and Aurélien Francillon.
 "Automated dynamic firmware analysis at scale: a case study on embedded web interfaces." *Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security*. ACM, 2016.
- Roussev, Vassil. "An evaluation of forensic similarity hashes." *digital investigation* 8 (2011): S34-S41.
- Durumeric, Zakir, Eric Wustrow, and J. Alex Halderman. "ZMap: Fast Internet-wide Scanning and Its Security Applications." *Usenix Security*. Vol. 2013. 2013.

