CIS 700/002 : Special Topics : Protection Mechanisms & Secure Design Principles

Nikheel V Savant

CIS 700/002: Security of EMBS/CPS/IoT Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania

01/27/2017

Topics to be covered:

- Protection Mechanisms
- Secure Design Principles

Topics to be covered:

Protection Mechanisms

Secure Design Principles

Protection Mechanisms

- Authentication
- Access Control
- Firewall
- Intrusion Detection
- Antimalware
- Application Whitelisting
- Flow Whitelisting
- Cryptography
- Integrity Verification
- Survivability

Protection Mechanisms

- Authentication
- Access Control
- Firewall
- Intrusion Detection
- Antimalware
- Application Whitelisting
- Flow Whitelisting
- Cryptography
- Integrity Verification
- Survivability

So what comes to your mind when you hear Authentication???

Challenge for selecting appropriate Password

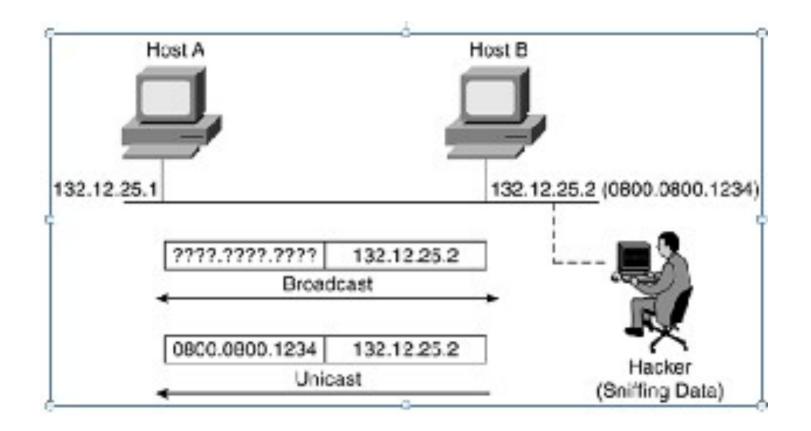
Strong Password

Easy to remember

PRECISE

On the Semantic Patterns of Passwords and their Security Impact

By Veras, R., Collins, C., and Thorpe, J. (2014)

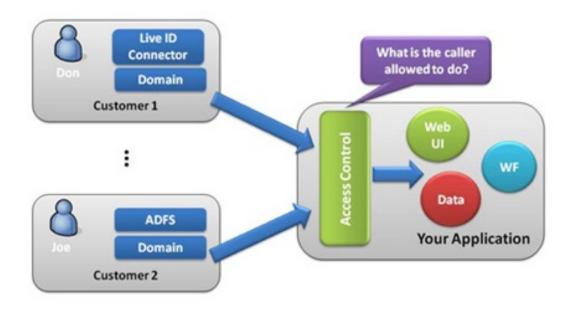

On the Semantic Patterns of Passwords and their Security Impact

Better than the state-of-the-art approach: In experiments limited to 3 billion guesses

- Guessed 67% more passwords from the LinkedIn leak
- 32% more passwords from the MySpace leak

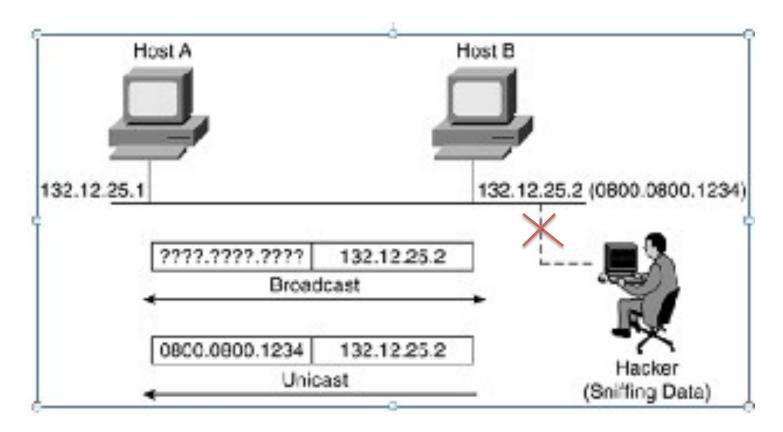
Eavesdropping

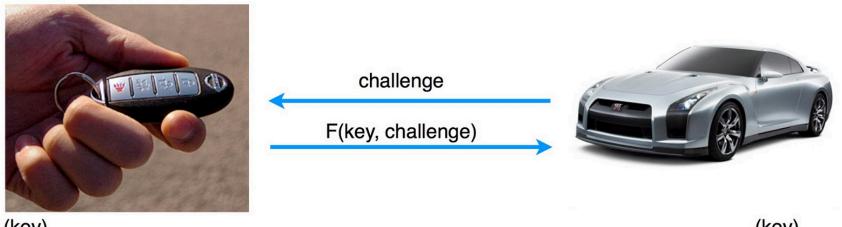
Protection Mechanisms


- Authentication
- Access Control
- Firewall
- Intrusion Detection
- Antimalware
- Application Whitelisting
- Flow Whitelisting
- Cryptography
- Integrity Verification
- Survivability

Access Control

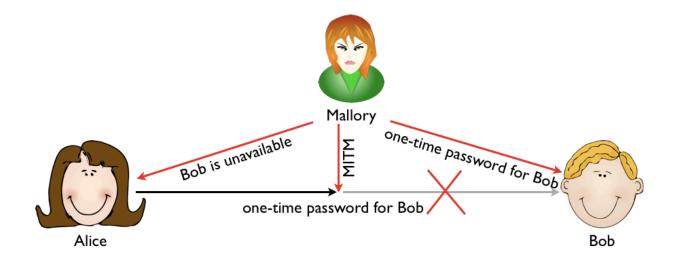
Access Control




Access Control

• Prevents Eavesdropping

Conventional Authentication Factor Challenge-Response Protocol



(key)

(key)

Alice "Hi Bob, it's Alice. Give me your key." \rightarrow Mallory Bob

Alice "Hi Bob, it's Alice. Give me your key." \rightarrow Mallory Bob

Alice Mallory "Hi Bob, it's Alice. Give me your key." \rightarrow Bob

Alice "Hi Bob, it's Alice. Give me your key." \rightarrow Mallory Bob

Alice Mallory "Hi Bob, it's Alice. Give me your key." \rightarrow Bob

Alice Mallory ← [Bob's key] Bob

Alice "Hi Bob, it's Alice. Give me your key." \rightarrow Mallory Bob

Alice Mallory "Hi Bob, it's Alice. Give me your key." \rightarrow Bob

Alice Mallory \leftarrow [Bob's key] Bob

Alice ← [Mallory's key] Mallory Bob

Alice "Hi Bob, it's Alice. Give me your key." \rightarrow Mallory Bob

Alice Mallory "Hi Bob, it's Alice. Give me your key." \rightarrow Bob

Alice Mallory \leftarrow [Bob's key] Bob

Alice ← [Mallory's key] Mallory Bob

Alice "Meet me at the bus stop!" [encr. Mallory's key] \rightarrow Mallory Bob

Alice "Hi Bob, it's Alice. Give me your key." \rightarrow Mallory Bob

Alice Mallory "Hi Bob, it's Alice. Give me your key." \rightarrow Bob

Alice Mallory \leftarrow [Bob's key] Bob

Alice ← [Mallory's key] Mallory Bob

Alice "Meet me at the bus stop!" [encr. Mallory's key] \rightarrow Mallory Bob

Alice Mallory "Meet me at the van down by the river!" [Bob's key] \rightarrow Bob

Alice "Hi Bob, it's Alice. Give me your key." \rightarrow Mallory Bob

Alice Mallory "Hi Bob, it's Alice. Give me your key." \rightarrow Bob

Alice Mallory \leftarrow [Bob's key] Bob

Alice ← [Mallory's key] Mallory Bob

Alice "Meet me at the bus stop!" [encr. Mallory's key] \rightarrow Mallory Bob

Alice Mallory "Meet me at the van down by the river!" [Bob's key] \rightarrow Bob Bob thinks that this message is a secure communication from Alice

Alice "Hi Bob, it's Alice. Give me your key." \rightarrow Mallory Bob

Alice Mallory "Hi Bob, it's Alice. Give me your key." \rightarrow Bob

Alice Mallory \leftarrow [Bob's key] Bob

Alice ← [Mallory's key] Mallory Bob

Alice "Meet me at the bus stop!" [encr. Mallory's key] \rightarrow Mallory Bob

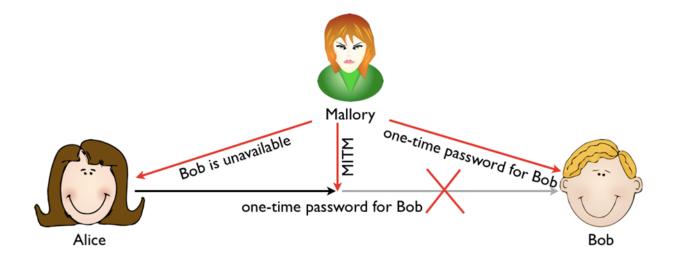
Alice Mallory "Meet me at the van down by the river!" [Bob's key] \rightarrow Bob

Bob thinks that this message is a secure communication from Alice

Bob goes to the van down by the river and gets robbed by Mallory

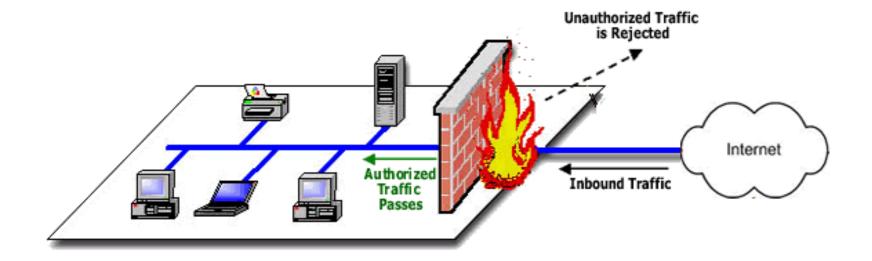
Cyber–Physical Device Authentication for the Smart Grid Electric Vehicle Ecosystem

Aldar C.-F. Chan, Senior Member, IEEE, and Jianying Zhou


Cyber–Physical Device Authentication for the Smart Grid Electric Vehicle Ecosystem Novel Contextual factor on physical connectivity Updated Challenge-Response Protocol Conventional Authentication Factor

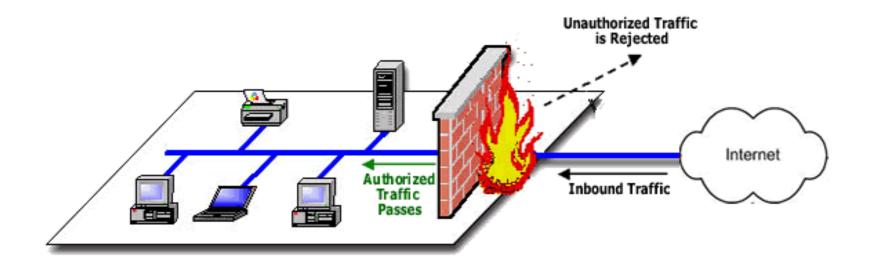
Novel Contextual factor on physical connectivity

- Latency examination
 - Ex: long cryptographic hash function



Protection Mechanisms

- Authentication
- Access Control
- Firewall
- Intrusion Detection
- Antimalware
- Application Whitelisting
- Flow Whitelisting
- Cryptography
- Integrity Verification
- Survivability



Barriers between the internal network & any other network, such as the Internet.

- Upon receiving a network packet, the firewall analyzes its characteristics:
 - Source address,
 - Destination address,
 - port number,
 - network status,
 - actual data delivered, etc

- After analysis it determines:
 - whether to let it go through,

- After analysis it determines:
 - whether to let it go through,
 - drop it,

- After analysis it determines:
 - whether to let it go through,
 - drop it,
 - delay it, or

- After analysis it determines:
 - whether to let it go through,
 - drop it,
 - delay it, or
 - redirect it for further inspection

- Simplest and most lightweight form
 - take decisions based on static rules
- Stateful firewalls
 - keep a history of the packets inspected
- Proxy firewalls
 - protect users in the internal network
- Deep packet inspection firewalls
 - take the packets apart, analyze the data they carry, and look for particular content

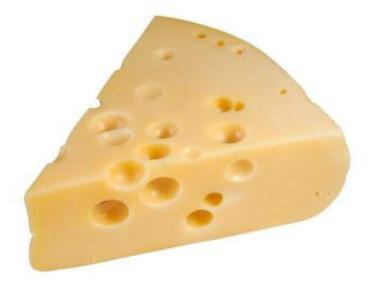
- Simplest and most lightweight form
 take decisions based on static rules
- Stateful firewalls
 - keep a history of the packets inspected
- Proxy firewalls
 - protect users in the internal network
- Deep packet inspection firewalls
 - take the packets apart, analyze the data they carry, and look for particular content

- Simplest and most lightweight form
 take decisions based on static rules
- Stateful firewalls
 - keep a history of the packets inspected
- Proxy firewalls
 - protect users in the internal network
- Deep packet inspection firewalls
 - take the packets apart, analyze the data they carry, and look for particular content

- Simplest and most lightweight form
 take decisions based on static rules
- Stateful firewalls
 - keep a history of the packets inspected
- Proxy firewalls

 protect users in the internal network
- Deep packet inspection firewalls
 - take the packets apart, analyze the data they carry, and look for particular content

Firewall Cons


Its effectiveness is only as good as its configuration.

Trends in Firewall Config. Errors Measuring the Holes in Swiss Cheese

Avishai Wool(2010)

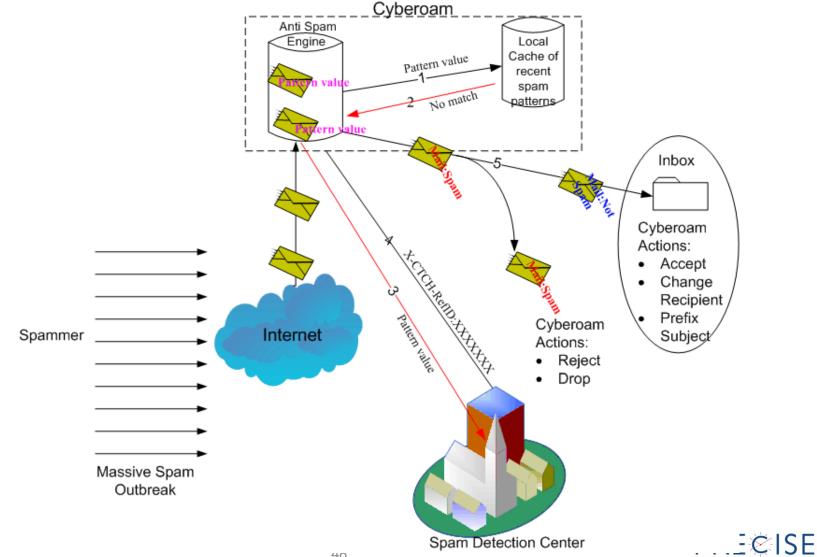
Protection Mechanisms

- Authentication
- Access Control
- Firewall
- Intrusion Detection
- Antimalware
- Application Whitelisting
- Flow Whitelisting
- Cryptography
- Integrity Verification
- Survivability

Intrusion Detection

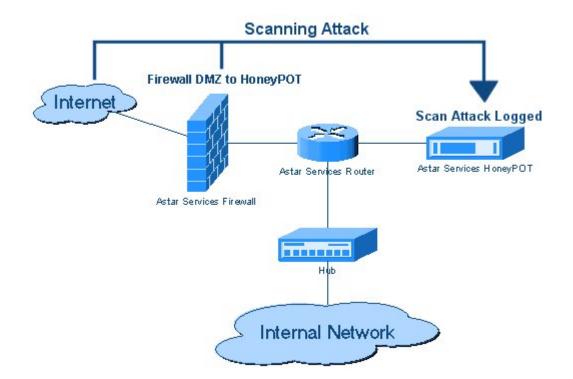
Intrusion Detection

- Monitors a network or systems for malicious activity or policy violations.
- Uses alarm filtering techniques to distinguish malicious activity from false alarms.
 - Ex: antivirus software


Intrusion Detection Mechanisms

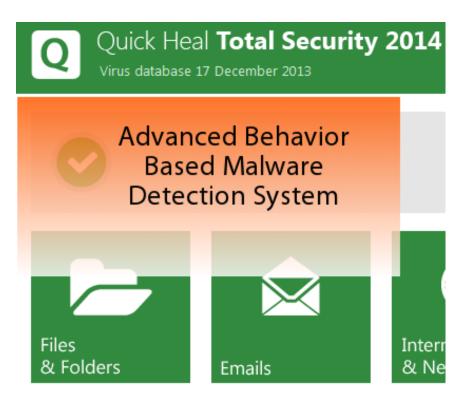
- Knowledge-based:
 - referred to as pattern-based,
 - signature-based, or
 - misuse detection
- Behavior-based:

- referred to as anomaly-based detection



Knowledge-based Intuition detection

Training approach(Honeypot)



Intrusion Detection Mechanisms

- Knowledge-based:
 - referred to as pattern-based,
 - signature-based, or
 - misuse detection
- Behavior-based:
 - referred to as anomaly-based detection

Behavior-based Intuition detection

Behavior-based Intuition detection

- Better at detecting attacks that have not been previously observed.
- They work by first defining what behavior should be considered as ordinary for a particular system and by then looking for evidence of behavior that is out of the ordinary.

Behavior-based Intuition detection

- Better at detecting attacks that have not been previously observed.
- They work by first defining what behavior should be considered as ordinary for a particular system and by then looking for evidence of behavior that is out of the ordinary.

Intrusion Detection Mechanisms

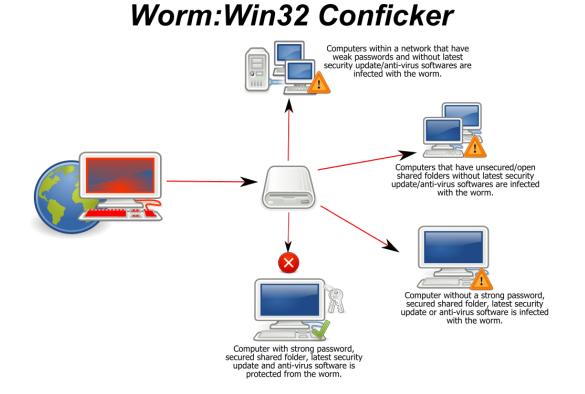
Knowledge-based

Behavior-based

Malware

Software used to disrupt computer or mobile operations, gather sensitive information, gain access to private computer systems, or display unwanted advertising

Trojans


Any malicious computer program which is used to hack into a computer by misleading users of its true intent

	avast! Warning 🛛 🕄 🗷		
A Trojan Horse Was Found!			
	There is no reason to worry, though, avast! has stopped the malware before it could enter your computer. When you click on the "Abort connection" button, the download of the dangerous file will be canceled.		
File name:	http://www13.plala.or.jp/setfsb/download/beta/setfsbU15a3_P5W		
Malware name:	Win32:Killwin-F [Trj]		
Malware type:	Trojan Horse		
VPS version:	0634-0, 21/08/2006		
Processing -			
Abort connection			
http://www.avast.com Fill in our virus report to help us			

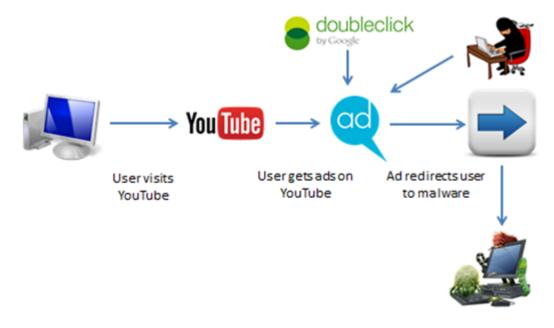
Worms

Program that replicates itself in order to spread to other computers.

Conficker Worm

Backdoors

Software by the programmer who created the original program and is often only known to that person



Software, data, or commands to "**exploit**" a weakness in a computer system or program to carry out some form of malicious intent, such as a denial-of-service attack, Trojan horses, worms or viruses

Infected user

A program that may be unwanted, despite the possibility that users consented to download it

Microsof	ft Internet Explorer 🛛 🔀
<u>.</u>	Are you sure you want to navigate away from this page?
	WAIT! Before you leave, CLICK CANCEL for a chance to win \$50,000!
	CLICK CANCEL BELOW
	Press OK to continue, or Cancel to stay on the current page.
	OK Cancel

PUP (Potentially Unwanted Programs)

A program that may be unwanted, despite the possibility that users consented to download it.

POTENTIALLY UNWANTED PROGRAM BLOCKED	
avast! File System Shield has blocked a threat. No further action is required.	
Object: C:\Documents and Settings\Neil J. Rubenking\Desktop\2\spy-lantern.exe Infection: Win32:KeyLogger-QS [Tool]	ü
Action: Moved to chest	
Process: C: WVINDOWS\Explorer.EXE	
The threat was detected and blocked just before the file was executed.	
O Add the file to the scan exclusion list	
Report the file as a false positive	

Social Engineering

An attack vector that relies heavily on human interaction and often involves tricking people into breaking normal security procedures.

Popular Social Engineering

- Phishing
- Scareware

Phishing(Fishing + Phreaking)

When a malicious party sends a fraudulent email disguised as a legitimate email, often purporting to be from a trusted source.

Scareware

Tricking the victim into thinking his computer is infected with malware and trick to buy him software such as fake antivirus protection.

Protection Mechanisms

- Authentication
- Access Control
- Firewall
- Intrusion Detection
- Antimalware
- Application Whitelisting
- Flow Whitelisting
- Cryptography
- Integrity Verification
- Survivability

Antimalware

Antimalware

A program of awareness for malware and social engineering, using similar concept as knowledge-based intrusion detection systems.

Guide to Malware Incident Prevention and Handling for Desktops and Laptops

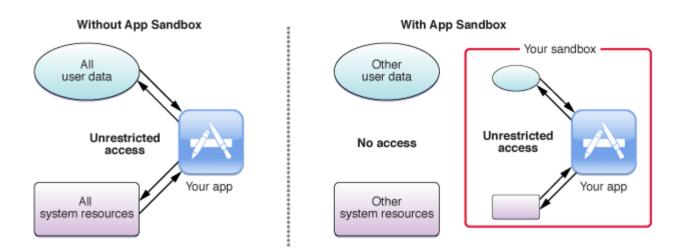
By Murugiah Souppaya, Karen Scarfone

Guide to Malware Incident Prevention and Handling for Desktops and Laptops

- Malware Incident Prevention
- Malware Incident Response

Malware Incident Prevention

- Antivirus Software
- Firewalls
- Sandboxing


Malware Incident Prevention

- Antivirus Software
- Firewalls
- Sandboxing
 - It is often used to execute untested or untrusted programs or code, possibly from unverified or untrusted third parties, suppliers, users or websites, without risking harm to the host machine

Malware Incident Prevention

- Antivirus Software
- Firewalls
- Sandboxing

Malware Incident Response

- Building and Maintaining Malware-Related Skills
- Facilitating Communication and Coordination

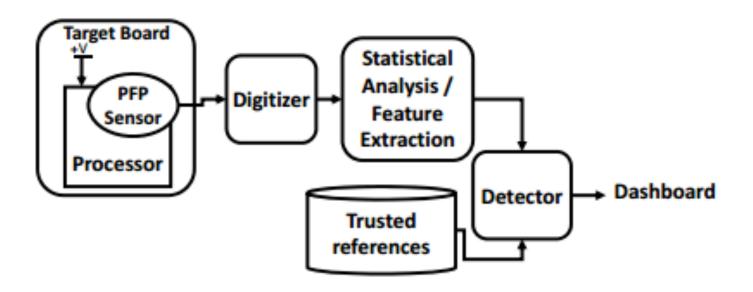
Detecting Malicious Software Execution in Programmable Logic Controllers Using Power Fingerprinting

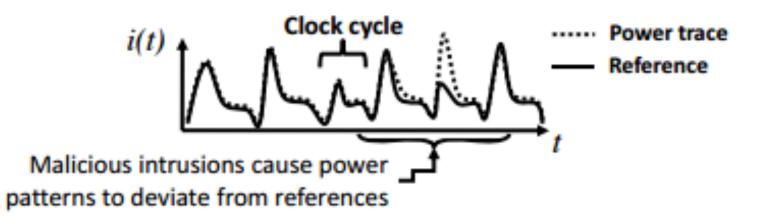
By Carlos Aguayo, Alan Hinton

Using power consumption patterns

Detecting Malicious Software Execution in Programmable Logic Controllers Using Power Fingerprinting

By Carlos Aguayo, Alan Hinton


Using power consumption patterns


Power Consumption Patterns

<u>Setup:</u>

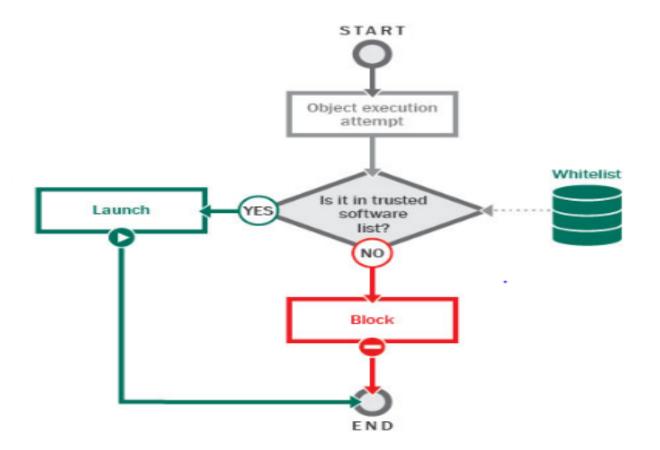
Power Consumption Patterns

Protection Mechanisms

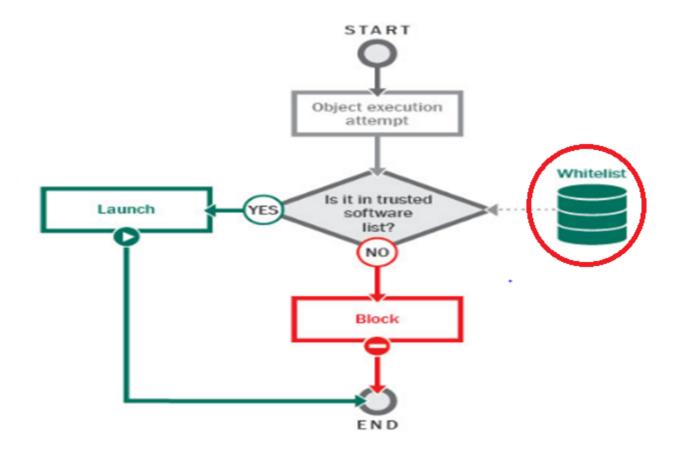
- Authentication
- Access Control
- Firewall
- Intrusion Detection
- Antimalware
- Application Whitelisting
- Flow Whitelisting
- Cryptography
- Integrity Verification
- Survivability

Application Whitelisting

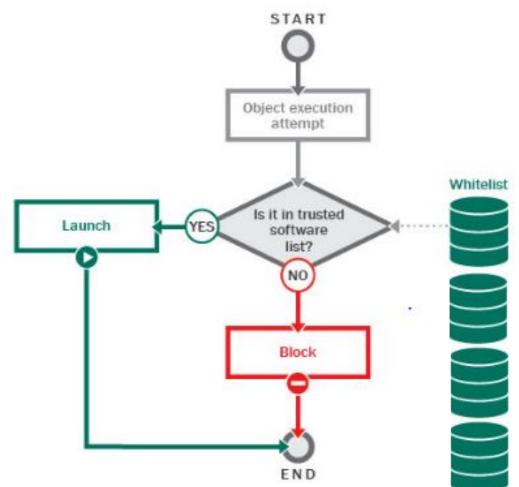
Is the practice of specifying an index of approved software applications that are permitted to be present and active on a computer system.


Protection Mechanisms

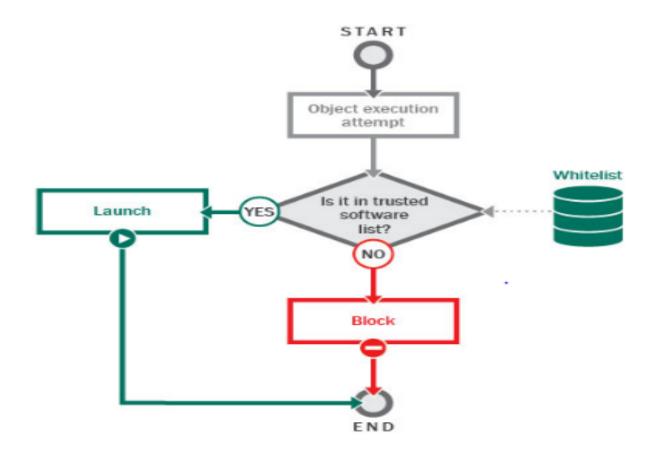
- Authentication
- Access Control
- Firewall
- Intrusion Detection
- Antimalware
- Application Whitelisting
- Flow Whitelisting
- Cryptography
- Integrity Verification
- Survivability



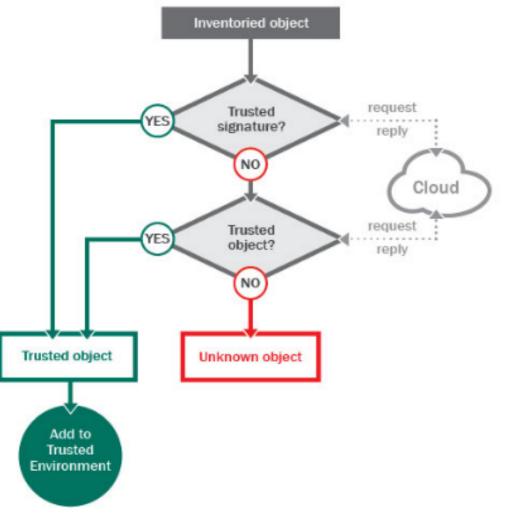
Flow Whitelisting



Flow Whitelisting(Main Factor)



Flow Whitelisting in Internet


Flow Whitelisting in CPS

Flow Whitelisting (Learning phase)

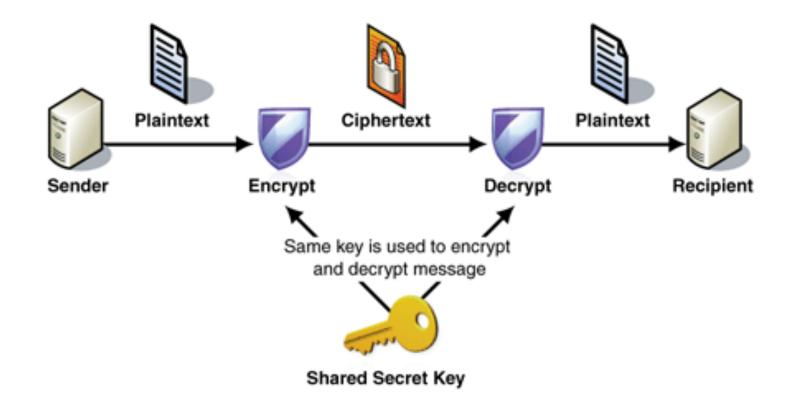
Flow Whitelisting (Learning phase)

Learning phase the network had not been under attack and all legitimate flows had been observed.


Protection Mechanisms

- Authentication
- Access Control
- Firewall
- Intrusion Detection
- Antimalware
- Application Whitelisting
- Flow Whitelisting
- Cryptography
- Integrity Verification
- Survivability

Cryptography



Cryptography

- Symmetric Ciphers
- Asymmetric Ciphers

Symmetric Ciphers

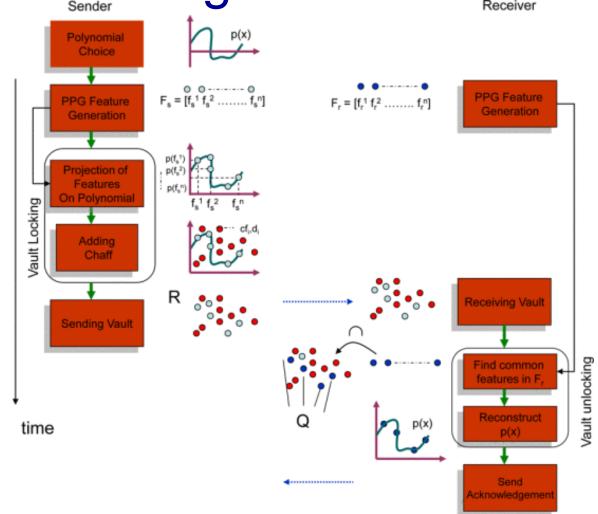
Drawback of Symmetric Ciphers

Secret key needs to be shared in a manner that cannot be intercepted by an adversary

PSKA: usable and secure key agreement scheme for body area networks.

By Venkatasubramanian, K. K., Banerjee, A., and Gupta, S. K. S. (2010)

PSKA: usable and secure key agreement scheme for body area networks.


By Venkatasubramanian, K. K., Banerjee, A., and Gupta, S. K. S. (2010)

A body's physiological state changes constantly and is quite unique at a given time

Physiological-Signal-Based Key Agreement

Asymmetric Ciphers Plaintext Ciphertext Plaintext Sender Encrypt Decrypt Recipient Different keys are used to encrypt and decrypt message Recipient's Recipient's Public Private Key Key

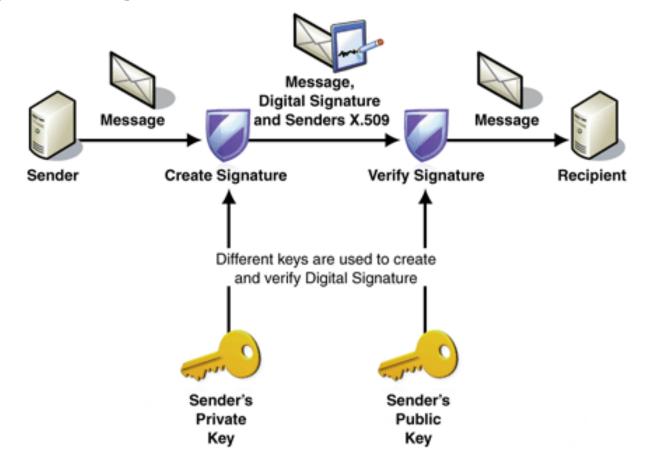
PRECISE

Drawback in Asymmetric Ciphers

For large blocks of data:

- More complicated than symmetric ones,
- Slower and
- Less practical

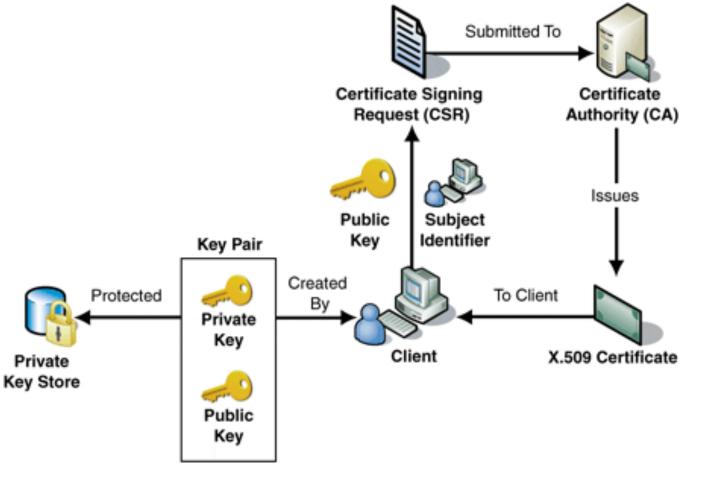
Symmetric cipher to encrypt the message



Asymmetric one to encrypt the secret key before sharing it with the intended recipient

Applications of Asymmetric Ciphers

• Digital Signature:



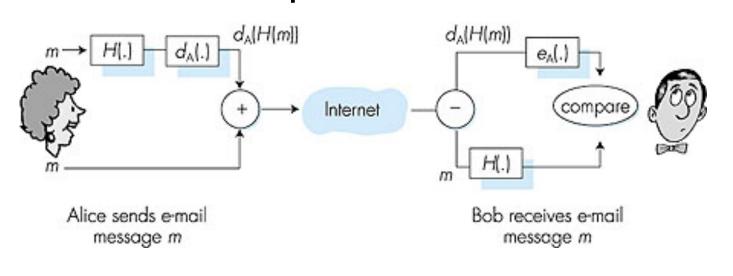
PRECISE

Applications of Asymmetric Ciphers

• Digital Certificate:

PRECISE

Protection Mechanisms


- Authentication
- Access Control
- Firewall
- Intrusion Detection
- Antimalware
- Application Whitelisting
- Flow Whitelisting
- Cryptography
- Integrity Verification
- Survivability

Integrity Verification

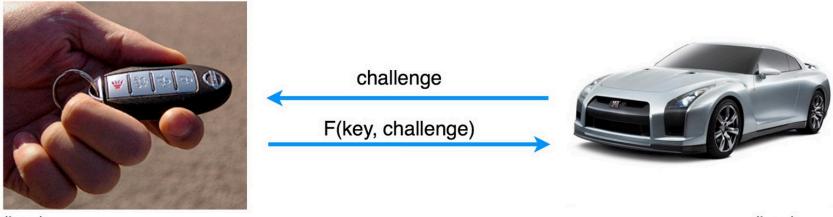
Is to compare it against a baseline file that is trusted to be correct, starting from their hashes and their sizes and continuing with more advanced tests on contents and operation.

Integrity Verification(Attestation)

Process of detecting unauthorized changes on a platform (a computer, embedded system, etc.)

- Trusted Platform Module
- Software-based(challenge-response mechanism)

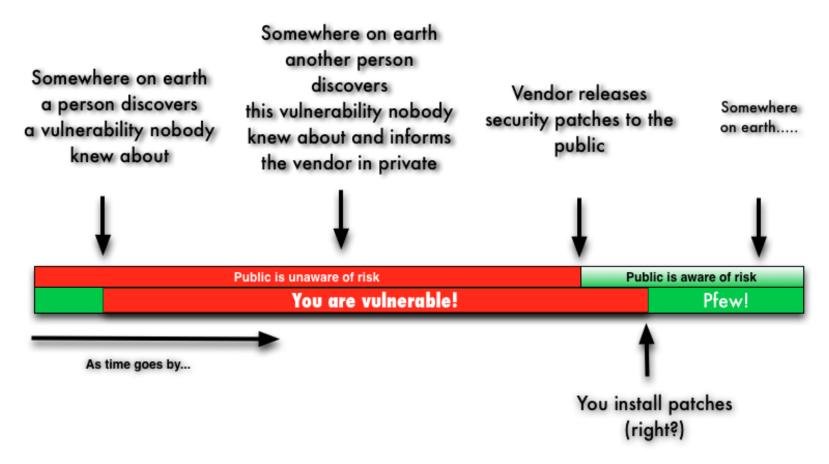
Trusted Platform Module


Dedicated tamper-resistant microprocessor chip

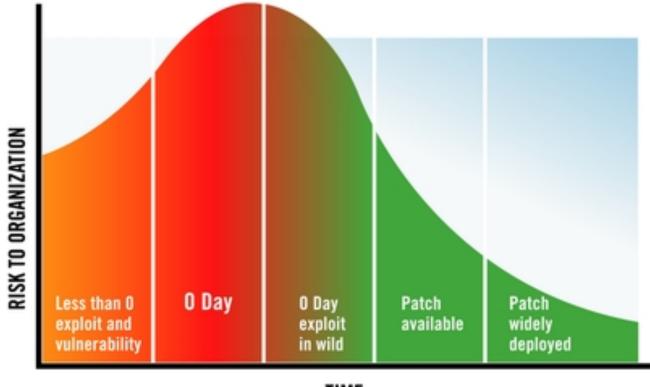
Software-based (challenge-response mechanism)

(key)

- Hardware-based attestation is reliable
- Software based attestation can be used in resource constrained embedded systems such as smart meters.



- Hardware-based attestation is reliable
- Software based attestation can be used in resource constrained embedded systems such as smart meters.

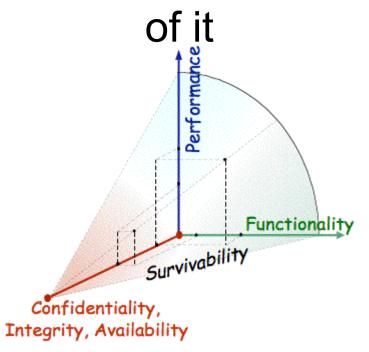

Zero-day exploits

PRECISE

Zero-day exploits(Risk Factor)

TIME

Protection Mechanisms


- Authentication
- Access Control
- Firewall
- Intrusion Detection
- Antimalware
- Application Whitelisting
- Flow Whitelisting
- Cryptography
- Integrity Verification
- Survivability

Survivability

Ability of a system to operate correctly and with minimal performance degradation even if malicious actors have compromised parts

Survivability

Redundancy:

- Simple redundancy
- Diversity
- Hot Standby
- Replication

Topics to be covered:

- Protection Mechanisms
- Secure Design Principles

Based on the idea of simplicity and restriction

Simplicity

- Less to go wrong
- Fewer possible inconsistencies
- Easy to understand

Restriction

- Minimize access power
- Inhibit communication

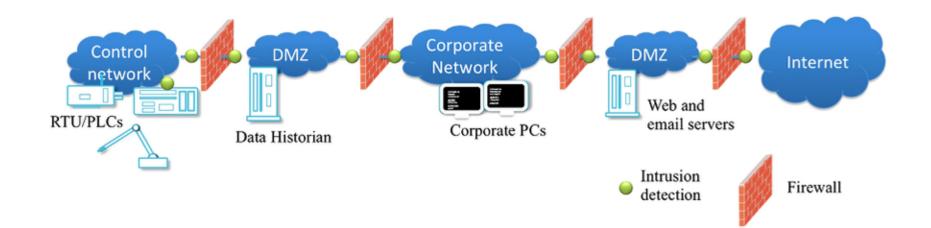
- Economy of Mechanism
- Defense-in-Depth
- Least-Privilege
- Separation of Privilege
- Minimization of Attack Surface
- Isolation
- Open Design
- Psychological Acceptability

Economy of Mechanism

- Keep the design and implementation as simple as possible
 - Keep It Simple, Silly! Principle
- Simpler means less can go wrong
 - And when errors occur, they are easier to understand and fix

Economy of Mechanism

- Keep the design and implementation as simple as possible
 - Keep It Simple, Silly! Principle
- Simpler means less can go wrong
 - And when errors occur, they are easier to understand and fix


- Economy of Mechanism
- Defense-in-Depth
- Least-Privilege
- Separation of Privilege
- Minimization of Attack Surface
- Isolation
- Open Design
- Psychological Acceptability

Defense-in-Depth

Multiple levels of protection

Defense-in-Depth

Defense in Depth Layers

- Economy of Mechanism
- Defense-in-Depth
- Least-Privilege
- Separation of Privilege
- Minimization of Attack Surface
- Isolation
- Open Design
- Psychological Acceptability

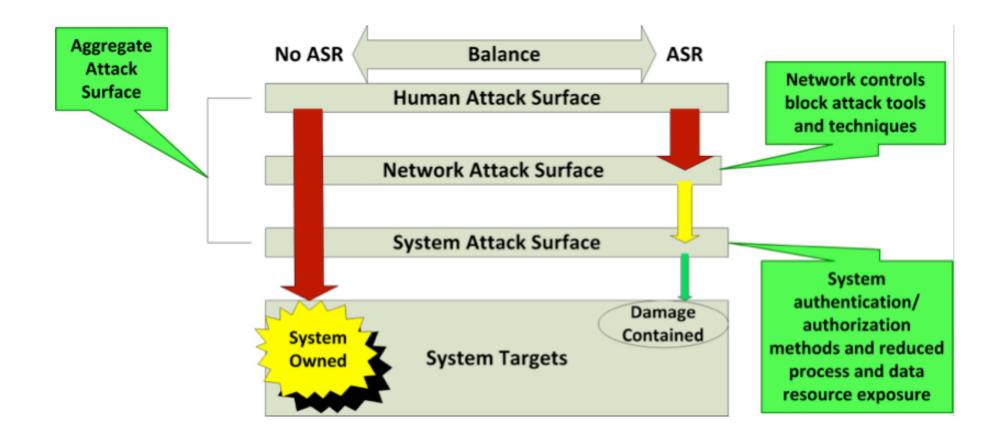
Least-Privilege

- A subject should be given only those privileges necessary to complete its task
 - Function, not identity, controls
 - Role Bases Access Control!
 - Rights added as needed, discarded after use
 - Active sessions and dynamic separation of duty
 - Minimal protection domain
 - A subject should not have a right if the task does not need it

- Economy of Mechanism
- Defense-in-Depth
- Least-Privilege
- Separation of Privilege
- Minimization of Attack Surface
- Isolation
- Open Design
- Psychological Acceptability

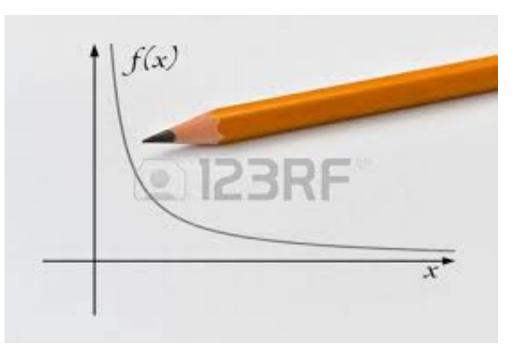
Separation of Privilege

- Require multiple conditions to grant privilege
 - Example: Checks of \$70000 must be signed by two people



- Economy of Mechanism
- Defense-in-Depth
- Least-Privilege
- Separation of Privilege
- Minimization of Attack Surface
- Isolation
- Open Design
- Psychological Acceptability

Minimization of Attack Surface

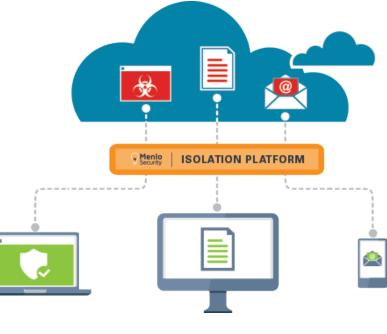


PRECISE

Minimization of Attack Surface

Minimization of the attack surface is in direct contrast to the increasing functionality of modern cyber-physical systems

- Economy of Mechanism
- Defense-in-Depth
- Least-Privilege
- Separation of Privilege
- Minimization of Attack Surface
- Isolation
- Open Design
- Psychological Acceptability



Isolation

Isolate subsystems from each other, a user's processes, and data from other users', and critical resources from external or public

access.

- Economy of Mechanism
- Defense-in-Depth
- Least-Privilege
- Separation of Privilege
- Minimization of Attack Surface
- Isolation
- Open Design
- Psychological Acceptability

Open Design

 Security should not depend on secrecy of design or implementation

 - **Popularly misunderstood to mean that source code should be public

 - **Does not apply to information such as passwords or cryptographic keys

- Economy of Mechanism
- Defense-in-Depth
- Least-Privilege
- Separation of Privilege
- Minimization of Attack Surface
- Isolation
- Open Design
- Psychological Acceptability

Psychological Acceptability

- Security mechanisms should not add to difficulty of accessing resource
 - Hide complexity introduced by security mechanisms
 - Ease of installation, configuration, use
 - Human factors critical here

