CARTS

A Tool for Compositional Analysis of
Real-Time Systems

Real-Time Systems Group
PRECISE Center
Department of Computer and Information Science
University of Pennsylvania
August 2009

TABLE OF CONTENTS

Introduction
Partl User Guide

1 How to build?
2 CARTS XML Format
2.1 Input XML File Description
2.2 Output XML File Description
Open a CARTS XML File
Add Component
Add Task
Update Component
Update Task
Remove Component/Task
Convert between XML and Tree view
0 Apply Process Models

= O 03O0 Ul W

PartII Design and Implementation

1 Design
1.1 Open Source Editor
1.2 CARTS User Interface
1.3 Architecture
2 Implementation
2.1 Classes
2.2 (Class Diagram
2.3 Scheduling Algorithms
2.3.1 abstractionProcedure

2.3.2 generatelnterface and transformInterface

2.4 Data Flow
2.4.1 CARTS XML to Tree View

2.4.2 Add/ Update/ Remove operations on Tree View
2.4.3 Apply Algorithms through Tree View

2.5 Source Code

Part III Extension

1 Add new field

1.1 Add new field to Scheduling Component

1.2 Add new field to Task
Add a new Algorithm
3 Output

N

INTRODUCTION

As real-time embedded systems are continually increasing complexity, integration
becomes a great challenge in their design and development. Managing complexity of
the system design is therefore essential for high-assurance and cost-effective
development. Component-based design and analysis methodology has consequently
been developed and gained its importance over the years as a powerful technique
for complexity management, which in turn necessitates compositional analysis
frameworks. To facilitate compositional analysis, given a component, one needs to
be able to compute the component interface - an appropriate abstraction of the
component's timing requirement - that can be used in the system analysis. Further,
to enable effective compositional analysis, accurate and efficient interface
generation becomes crucial.

What is CARTS ?

To meet the growing needs, we have developed CARTS (Compositional Analysis of
Real-Time Systems) as a platform-independent tool that automatically generates
resource interfaces needed for the compositional analysis of real-time systems.
CARTS is built on top of several interface generation algorithms that were
developed by Real-Time Systems Group at the PRECISE center. The tool has a GUI
that provides users with easy ways to specify and analyze the system - by using the
GUI options or by editing XML files. It is apt for visualizing the generated component
interfaces in a tree-like structure, as well as charting the demand- and supply-
bound functions of the generated interfaces. At the same time, it is also accompanied
by a lightweight command-line option that enables our tool to be integrated with
other existing toolchains. In essence, CARTS can be conceived as a handy companion
to system designers for analyzing and designing hardware-software architectures of
real-time systems in a compositional manner.

Development of CARTS

CARTS is a joined effort of several members in the Real-Time Systems Group at the
University of Pennsylvania, under the supervision of Prof. Insup Lee and Prof. Oleg
Sokolsky. The algorithm engines were written by Dr. Arvind Easwaran and Jaewoo
Lee. The GUI was written by Vinay Ramaswamy. Linh Thi Xuan Phan was involved
in the design and management of the GUI development and Sanjian Chen helped
with testing the tool.

Acknowledgement

This research was supported in part by AFOSR FA9550-07-1-0216 and NSF CNS-
0720703.

PART I

CARTS 1.0 User Guide

1. Getting Started with CARTS

CARTS binary and source code distributions are located at the CARTS website
(http://rtg.cis.upenn.edu/carts/). The tool requires Java version 1.6 and above to
compile and run, which can be found at http://java.sun.com/javase/downloads/.
First, download CARTS to your computer and unzip it.

Running CARTS Binary Distribution. Double-click on the "carts.jar" file in the
unzipped folder to invoke the application. Alternatively,

* Open acommand prompt (Windows) or a shell (Mac OS / Linux).

¢ Atthe prompt/shell, type in: java -jar Carts.jar

Compiling CARTS Source Code. To compile the source codes, follow the steps
below:

* Open acommand prompt (Windows) or a shell (Mac OS / Linux).

* Atthe prompt/shell, go to the source code directory: cd source

* Compile the source using ant: ant compile

* Torun the executable file, type in: java -cp build Carts

2. CARTS Input/Output Specification in XML Format
2.1 Input XML file description

The input XML specification to the tool follows the Document Type Description
format below.

<!ELEMENT system (component | task)* >

<!ATTLIST system os_scheduler (DM | EDF) #REQUIRED > : the whole system’s scheduling algorithm
<!ATTLIST system min_period NMTOKEN #IMPLIED > : system’s minimum period

<!ATTLIST system max_period NMTOKEN #IMPLIED > : system’s maximum period

<!ELEMENT component (component | task)* >

<!ATTLIST component name NMTOKENS #REQUIRED > : component’s name

<!ATTLIST component criticality CDATA #REQUIRED > : used in ARINC-653

<!ATTLIST component vmips NMTOKEN #REQUIRED > : used in ARINC-653

<!ATTLIST component scheduler (DM | EDF) #REQUIRED > : component’s scheduling algorithm
<!ATTLIST component subtype NMTOKEN #REQUIRED > : used in ARINC-653

<!ATTLIST component min_period NMTOKEN #REQUIRED > : component’s minimum period
<!ATTLIST component max_period NMTOKEN #REQUIRED > : component’s maximum period

<!ELEMENT task EMPTY >

<!ATTLIST task name NMTOKENS #REQUIRED > : task’s name

<!ATTLIST task p NMTOKEN #REQUIRED > : task’s period

<!ATTLIST task d NMTOKEN #REQUIRED > : task’s deadline

<!ATTLIST task e NMTOKEN #REQUIRED > : task’s execution time

<!ATTLIST task jitter NMTOKEN #IMPLIED > : used in ARINC-653

<!ATTLIST task noninterrupt_fraction NMTOKEN #IMPLIED > : used in ARINC-653

Consider a sample system represented in the following graphical form.

R,(10, ?) R,(10, ?)

Figure 1. A sample hierarchy of components

The input XML description corresponding to the above sample system is given
below.

<system os_scheduler="EDF" min_period="5" max_period="5">
<component name="Comp1l" criticality="?" vmips="0.8" scheduler="EDF"
subtype="tasks" min_period="10" max_period="10">
<task name="T11" p="25" d="25" e="4" jitter="0" noninterrupt_fraction="0" />
<task name="T12" p="42" d="42" e="5" jitter="0" noninterrupt_fraction="0" />
</component>
<component name="Comp2" criticality="?" vmips="0.8" scheduler="RM"
subtype="tasks" min_period="10" max_period="10">
<task name="T21" p="27" d="27" e="4" jitter="0" noninterrupt_fraction="0" />
<task name="T22" p="40" d="40" e="5" jitter="0" noninterrupt_fraction="0" />
</component>
</system>

Figure 2. The XML input description of the system in Figure 1

2.2 Output XML file description

Resource Model (Resource supply model which is needed to schedule given task
set)
1) Period: given period between minimum period and maximum period
2) Bandwidth: calculated optimal(minimal) bandwidth which can schedule
given task set under optimal deadline
3) Deadline: calculated optimal deadline which can produce optimal (minimal)
bandwidth (Only EDP resource model can change deadline. Otherwise,
deadline is same as period)

Processed Task Model (A task model which are composed with task set in given
component and its sub components)
1) Period: given period between minimum period and maximum period
2) Execution Time: calculated optimal(minimal) execution time of the task
which is composed with given component and its subcomponent under
optimal deadline
3) Deadline: calculated optimal deadline which can produce optimal (minimal)
execution time (Only EDP resource model can change deadline. Otherwise,
deadline is same as period)

Example: Below is the output result of a system that uses EDP resource model

Resource Model

Period : 5.0, bandwidth : 0.65, deadline : 3.25
Processed Task Model

Period : 5.0, Execution Time : 3.25, Deadline : 5.0

3. Open An Existing CARTS XML File

Ji¥ Compositional Analysis of Real-Time Systems

File Edit Search Component/Task Process-Algorithms About

Open

i Compositional Analysis of Real-Time Systems

File Edit Search Component/Task Process-Algorithms About

P = - 5 G

R! Open

Look In: Iﬁ xml l'l

(] xmifiles

step2 | D e poedcsm]
example_dm.xm

[y example_edf.xml

File Name: |ex_peri0dic.xm|

Files of Type: |xml

|
A

Open || Cancel |

(¥ Compositional Analysis of Real-Time Systems

File Edit Search Component/Task Process-Algorithms About
O a B 56 & 8¢ BAB <o
1 B ex_periodic.xml

[=NC) Comp2
©@ PART16_MAIN ID=1
©@ PART16_MAIN ID=1
©@ PART16_MAIN ID=1

< /components>
<component name="Conpz"™
<task name="PART16_MAIN

<task name="PART16_ MAIN
<task name="PART16_ MAIN
< /components>

< /system>

B O 0s Scheduler 4<system os_scheduler="DM" min period="15" max period="15">
[SM(C) Comp1 <component name="Conpl”™ criticality="7?" wvmips="0.8" scheduler=!
© PART16_MAIN ID=1 <task name="PART16 MAIN ID=1" p="45" d="45" e="2" jitter="0" n
© PART16_MAIN ID=1 <task name="PART16 MAIN ID=1" p="65" d="65" e="3" jitter="0" m
© PART16_MAIN ID=1 <task name="PART16 MAIN ID=1" p="§5" d="85" e="4" jitter="0" n

criticality="2?" vmips="0.8" scheduler='
ID=1" p="357 d="357 e="2" jitter="0"
ID=1" p="55" d="55" e="3" jitter="0"
ID=1" p="75" d="757 e="4" jitter="0"

J CARTS XML File J

4. Add A New Component

[i# Compositional Analysis of Real-Time Systems

Fie Edit Search Component/Task Process-Algorithms About

B o @B & P BB &

[B ex_periodicxml |

B O 0S Scheduler
8 ® Comp

& pAF Add Component

g PAR Add Task
o ® Cor::\; Remove Component
© pap Edit Component Data

© PAR Process Periodic
@ PAF

Process EDP

Process Arinc

h AV N

<system o0s_scheduler="DM" min period="
<component name="Comnpl™ criticality="2
<task name="PART16_MAIN ID=1" p="45" d
<task name="PART16_MAIN ID=1" p="65" d
<task name="PART16_MAIN ID=1" p="55" d
< /components>

<component name="Conp2”™ criticality=""2
<task name="PART16_MAIN ID=1" p="35" d
<task name="PART16_MAIN ID=1" p="55" d
<task name="PART16_ MAIN ID=1" p="75" d
< /components>

< /systen>

|

A8 Compositional Analysis of Real-Time Systems

File Edit Search Component/Task Process-Algorithms About

B & & @ & e B HB o

1 B ex_periodic.xml |

B © 0S Scheduler 4<system os_scheduler="DH" nmin perit
=N C] Comp1 <component name="Comnpl” criticalits
© PART16_MAIN ID=1 <task name="PART1S MATIN ID=1" p="4!
g PART16_MAIN ID=1 <task name="PART16 MAIN ID=1" p="6!
PART16_Mpasaini—s ID=1" p="5!
B8 ® comp2 S5
© PART16 o
’ -)) crit lits
© PART16_M| | Provide Details of the New Component Hri licz_i___,]
o PART16_| Scheduler |DM IVI ID=1" p="5!
Component Name INewComponent | ID=17 p=""7
Min Period 5 |
Max Period E| |
| ok || cancer |
il Compositional Analysis of Real-Time Systems
File Edit Search Component/Task Process-Algorithms A
B @ E&d& 2 ® b
1 2 ex_periedic.xml |
B © 0s Scheduler :<system
=NC] IComp1] <compone
W PART16_MAIN ID=1 <task na
@ PART1 6_MAIN ID=1 <task na
© PART16_MAIN ID=1 | task na
e (C) NewComponent < /comporn
= Coomp2 B <compone
PART16_MAIN ID=1 ctask na
@ PART1 6_MAIN ID=1 . task na
© PART16_MAIN ID=1
<task na
< /compon 9
< /3ysten

5. Add A New Task

Emn

Step 2

B

i8] Compositional Analysis of Real-Time Systems

File

G

Edit Search Component/Task Process-Algorithms About

a BEaE 96

[B ex_periodicxml |

& P DHAB &

File

G

B © Cor

B @ 0S Scheduler

Add Component

Add Task

Remove Component
Edit Component Data
Process Periodic
Process EDP
Process Arinc

& P HHB

4<system os_schedu
<component name="
<task name="PARTIL
<task name="PARTL
<task name="PARTIL
< /component>
<component name="
<task name="PARTI1
<task name="PARTIL
<task name="PARTL
< /components>

< /systen>

Edit Search Component/Task Process-Algorithms About

a g 96

("B ex_periodic.xml |

G D

B O 0S Scheduler
B8 ® Comp1

© PART16_MAIN ID=1
©@ PART16_MAIN ID=1

<system 03_scheduler="DM" min }

<component name="Conpl”
<task name="PART16 MAIN

<task name="PART16 MAIN

File Edit Search Component/Task Process-Algorithms About

& PARTAA LANID=1 ™
= © comp2 @
@ PART o 2
@ PAR1T | Provide Details of the New Task ATH
© PART | Task Name [NewTask] ATH
Period |45 | AL
Execution [2]
Deadline 45| |
| ok || cancer |

G s @& @ & 8¢ BHB &
1‘" B ex_periodic.xml
2 ® os Scheduler 4<system os_scheduler="DM"
= (C) <component name="Conpl”™ cr
W PART16_MAIN ID=1 <task name="PART16 MAIN ID
© PART16_MAIN ID=1 <task name="PART16 MAIN ID
© PART16_MAIN ID=1 <task name="PART16 MAIN I
© NewTask < /components
8 G Comp2 <component name="ConpZ” cr
g PART16_MAIN 1D=1 <task name="PART16 MAIN ID
Q PART16_WAN ID= Ctask namec"PARTIS AT T
- <task name="PART16_MAIN ID
< /components>
< /system>

critics
ID=1" y

ID=1" y
ID=1" }
critics
ID=1" j
ID=1" }
ID=1" y

10

6. Update An Existing Component

En

File

i¥ Compositional Analysis of Real-Time Systems
Edit Search Component/Task Process-Algorithms About

B a H& & 5 % bk &
1 B ex_periodicxml |
B © 0s Scheduler 4<systen os_scheduler="DM" mir
B8 © comn1 <component name="Coupl” criti
© f Add Component <task name="PART16 MAIN ID=1"
0 F Add Task <task name="PART16_MAIN ID=1"
O e it <task name="PART16 MAIN ID=1"
B © con - < /component>
O Edit Componest Bata <component name="Conpz™ criti
8 il Process Periodic <task name="PART16 MAIN ID=1"
f Process EDP <task name="PART16_MAIN ID=1"
Process Arinc <task name="PART16_MAIN ID=1"
< /conponents>
< /system>

En

File

G

[B ex_periodic.xml

|

A8 Compositional Analysis of Real-Time Systems
Edit Search Component/Task Process-Algorithms About

a 5B

A

(==

5 ¢ [XD

B O 0S Scheduler
B8 ® Comp1

© PART16_MAIN ID=1

<component name="Comnpl™
task name="PART16 MATIN

or T RN
e Or MATN
roviae tails of the New omponent
= %’”; Provide Details of the New C _

© prA | scheduler |EDF EIRl e
Q@r '
Component Name |Comp1| | MAIN
Min Period 5.0 | |-

Max Period 5.0 |

I OK || Cancel l

4<system os_scheduler="DN" min peric

criticality
ID=1" p="4%f
ID=1" p="6E%
ID=1" p="8%
criticality
ID=1" p="3E%
ID=1" p="5&
ID=1" p="7%

11

7. Update An Existing Task

(s 1]

En

A8 Compositional Analysis of Real-Time Systems

Fie Edit Search Component/Task
A =

” B ex_periodic.xml I

Process-Algorithms About

% BEB &

B8 @ 0S Scheduler
[=MC] Comp1
@ PART1A MAIN ID=1

© P4 Edit Task
© PA Remove Task

[=MC]) Comp

@ PART16_MAIN ID=1
@ PART16_MAIN ID=1
©@ PART16_MAIN ID=1

4<system os_scheduler="D
<component name="Conpl"™
<task name="PART16_ MATN
<task name="PART16_MATIN
<task name="PART16_ MATN
< /components>

<component namne="Conpz"
<task name="PART16_MATIN
<task name="PART16_MATN
<task name="PART16 MATIN
< /components>

< /system>

[\# Compositional Analysis of Real-Time Systems

File Edit Search Component/Task Process-Algorithms About

B a & & 5 & DX B oo
[B ex_periodic.xml |
B O 0S Scheduler 4<system o03_scheduler="DH" xu
=RC] Comp1 <component name="Compl”™ cri
© PART16_MAIN ID=1 <task name="PART16 MAIN ID=
8 PART16_MAIN ID=1 task name="PART1E MAIN ID=
P MAIN ID-=
g ® comp (eS|
0 PAR z = npz2"” cri
© paR | Provide Details of the New Task Imzn Ipd
© PAH | Task Name [PART16_MAINID=1 | (=~
Period 45.0 | | B man 1p-
Execution 2.0 |
Deadline |45.0 |
I OK H Cancel l

12

8. Remove An Existing Component/Task

i# Compositional Analysis of Real-Time Systems

Fie Edit Search Component/Task Process-Algorithms About

G =

& B

1" 2 ex_periodic.xml

!

& /P BhEB &

B8 ® comp1

B © 0S Scheduler

© PAF
@ PAF
© PAF

Add Component
Add Task

B8 ® comp2
@ PAF
@ PAF
@ PAF

Remove Component
Edit Component Data
Process Periodic
Process EDP
Process Arinc

4<system os_scheduler="DN'

<component name="Compl™ i
<task name="PART16 MAIN |
<task name="PART16 MATIN |
<task name="PART16 MAIN !
< /components>

<component name="C ump !

< R Composmonal Analysns of Real-Time Systems

-t File Edit Search Component/Task Process-Algorithms About
::E;ﬁ‘;{@@l & P/ b H B &
‘1 B ex_periodic.xml l
B © 0s Scheduler 4<systen os_schedul.
=MC) Comp2 ’<component name=""Cs

© PART16_MAIN ID=1
© PART16_MAIN ID=1
©@ PART16_MAIN ID=1

<task name="PART1E
<task name="PARTLE
<task name=""PARTIE
</components>

<component name="Ci

i8] Compositional Analysis of Real-Time Systems

Fie Edit Search Component/Task Process-Algorithms About

G =

= & B

J"' R ex_periodic.xml

I

& 8% DhiAB &

B8 ® comp2

© PART16_MAIN ID=1
© PART16_MAIN ID=
© PART16_MAIN ID=

B O 0s Scheduler

<gystem o0s_scheduler="DH" 1
<component name="Conpl™ crij
<task name="PART16_ MAIN ID=

Edit Task name="PART16 MAIN ID=

Remove Task SRS o e
7< File Edit Search Component/Task Process-Algorithms About
<col — =
e o HO@ B A% DY

<tai(" B ex_periodic.xml I

B @ 0S Scheduler ‘ <system 0S_sSc)
8 ® comp2
©@ PART1 6_MAIN ID=1

© PART16_MAIN ID=1

<component na
<task name="F
<task name="F
<task name="P,

< donmnonents

13

9. Convert between XML and Tree View

File

G =

= @ @

A8l Compositional Analysis of Real-Time Systems

J 2 OUTPUT_41.xml

I

Edit Search Component/Task Process-Models About

B A® by Effli,-»

Convert to Tree Structure J

B ¢ PART20ID=20
@ PART?N MAIN IN=1

‘ ¢/ 0S Scheduler

[i¥ Compositional Analysis of Real-Time Systems

File

G =

= & &

,1 B OUTPUT_41.xml

l

Edit Search Component/Task Process-Models About

& ¢ bhEO

<component name="PART16 ID=16" criticalit:

ﬁ 1<system 03_scheduler="DH">

raol vama=""DADTIA MAITH Th-1°7

Convert to XML J

B ¢ PART201D=20

‘r o/ 0S Scheduler

© PART?2N MAIN IN=1

10. Apply Processing Models

<component name="PART16 ID=16" criticalit:
“traocl rama=""DADTIA MAITH Th-17

H 1<system 03_scheduler="DM">

wn=""20000N"

Ji¥ Compositional Analysis of Real-Time Systems

M
v

File Edit Search Component/Task Process-Algorithms About
B s & B S R BHEO
f B ex_periodic.xml
B2 O 0S Scheduler |4<avs
ENC]) Comp1 Add Component
© PART1 Add Task k name=""PAR::
© PART1 k name=""PAR
©@ parT1 Remove Component & nane="PAR
[EMC]) Comp2 Edit Component Data uponents
© PART1 Process Periodic ponent name
© PART1 i
Process EDP k name="FAR
© PART1 L
s k name="PAR
Process Arinc
k name="PAR
< /conponents>
< /systen>

ten os_scheduler="DM" mir
ponent name="Conpl” critil

Analysis Result with Periodic Algorithm

&
=4 oG A
M Period: 15.0, Bandwidth: 0.0, Deadline: 15.0
=] ® Processed Task Model
M Period: 15.0, Execution Time: 0.0, Deadline: 15.0
=lC) Comp1
=] ® Resource Model
M Period: 5.0, Bandwidth: 0.13, Deadline: 5.0
B ® Processed Task Model
M’ Period: 5.0, Execution Time: 0.68, Deadline: 5.0
=N C] Comp2
=] ® Resource Model
M Period: 7.0, Bandwidth: 0.22, Deadline: 7.0
=] @ Processed Task Model
M Period: 7.0, Execution Time: 1.55, Deadline: 7.0

14

A8 Compositional Analysis of Real-Time Systems

File Edit Search Component/Task Process-Algorithms About

 a BB & /Y BEB &
1 2 output.xml
4<component name="035 Scheduler” algorithm="Periodic™>
{resourcex
<model period="15.0" bandwidth="0.0" deadline="15.0"> </model>
</resource>
<processed_task>
<model period="15.0" execution_ time="0.0" deadline="15.0"> <{/model>
</processed_task>
<component name="Conpl™ algorithm="Periodic”>
{resource>
<model period="5.0" bandwidth="0.13" deadline="5.0"> </model>

</resource>

<processed_task>
<model period="5.0"

</processed_task>

</conponents>
<component name="Conp2"

£resource>
<model period="7.0"

</resource>

<processed_task>
<model period="7.0"
</processed_task>
</conponent>
< /component>

execution time="0.68" deadline="5.0"> </model>

algorithm="Periodic>

bandwidth="0.22" deadline="7.0"> </model>

execution_time="1.55" deadline="7.0"> </model>

11. View Demand/Supply Bound (DBF/SBF) Functions

| B sim_n_periodic.xml

B ¢ 0S Sched==
B ¢ Comp| Add Component

© tas Add Task
@ tas

©Q task2

Remove Component
Edit Component Data
Process Periodic
Process EDP
Process Arinc
SBF/DBF

15

%] CART EEN

File Edit Special

SBF/DBF graph

' ' ' ' Resource Mode| ®
Tasks Demand ®
60 7
=
(=
(1]
Saof -
O
201 7
0 C 1 ! ! 1 1 -
0.0 0.2 0.4 0.6 0.8 1.0
Time ¥10°

In the SBF/DBF graph, the SBF of the resource model is represented by a red line.
This function captures the resource supplied by the interface at a given time. For
example, the amount of resource units supplied by the interface at any time interval
of length 0.4* 102 is approximately 30.

The DBF is represented by a blue line, which represents the amount of resource
needed by the tasks in the component for them to be schedulable. In the above
figure, the number of resource units required in any interval of length 0.4* 102 in
order to feasibly schedule the tasks in the selected component is approximately 25.
In this example, the DBF locates below the SBF, therefore the tasks in the
component are schedulable under the computed interface.

16

PART II

CARTS Design & Implementation

17

1. Design of CARTS
1.1 Open Source Editor
An XML editor is needed to support the editor functionalities for the XML file.
Instead of writing a new one from scratch, we are using the Open Source Editor JPE

(http://www.jpedit.co.uk) written in Java. JPE is a simple editor supporting the basic
functions with semantic support for XML.

1.2 CARTS Graphical User Interface

{8 Compasitional Anabysis of Real-Time Systems

Ehe Edt Sesrch ComponenyTesk Aporim About
Bas 96 8 S DEADO

B ouTPuT_ 41 xmi

+/ 08 Scheduler - :'<sr.-un o= _schedulars"DE> -
8v ,-0.‘.71 napea"FARTIG I

-

[Analysis Result with Perodic Algorthm

Analysis Outpu

) Lme: 10159 Cat 0 | Char:0

1.3 Architecture

The JPE Editor is used as a framework for CARTS. The XML Editor component of Ul
is completely managed by the JPE software itself. The Tree View component of the Ul
has been added by to display the system as a tree structure. The following diagram
depicts the components and their interaction.

18

Scheduling Algorithms J Supply-Demand Graph Generator J

Component Area I

Component Area

Component Area

Scheduling Tree

L Interpreter

Generate XML

Analysis Output

Add/Update/Remove Component
* Add/Update/Remove Task

* Apply Scheduling Algorithms

* Generate Supply-Demand Graph

19

2. Implementation of CARTS

2.1 Classes

The following provides a short description of the major classes in CARTS.

2.1.1 SchedulingComponent

SchedulingComponent class represents the component in the system. It contains the
name given to the component, child components and tasks. The class also contains
fields which contain the maximum and minimum period values required, algorithm
which the process models apply on the component.

This also supports methods to apply Periodic, EDP and ARINC models on the
SchedulingComponent and generate values. It also supports writing the component
field values to a given XML file.

2.1.2 Task

Task class represents the task that is present under a SchedulingComponent. The
class consists of fields for task's period, deadline, and execution time. It also
supports writing the task field values to a given XML file.

2.1.3 SchedulingTree

SchedulingTree class contains reference to the root component of the entire system.
It provides methods to write the entire system to an XML file.

2.1.4 XMLInterpreter

XMLInterpreter class contains methods to interpret the given XML file and create
SchedulingComponents and Tasks, and eventually building a Scheduling Tree.

2.1.5 ComponentUI

ComponentUI class represents the Ul for SchedulingTree. It contains a reference to
the SchedulingTree it is representing. It contains a JTree object which is a shadow
tree of the referred SchedulingTree. This JTree object results in a Tree View of the

SchedulingTree.

It provides the user with options to add/update/remove component/task. It also
provides methods to apply process models on any SchedulingComponent.

2.1.6 Output

20

Output class provides methods to display the values generated by applying process
models as a tree and also write them in an XML file.

2.1.7 ComponentArea

ComponentArea class is a combination of SchedulingTree, XML Editor, ComponentUI
and Output objects. A ComponentArea object can be created from scratch or using an
existing CARTS XML file. When created from an existing one, the XMLInterpreter is
used to build the SchedulingTree object. The SchedulingTree is given to the
ComponentUI to build the Tree View of it.

This class also provides methods to convert an edited XML to a Tree View and vice-
versa.

2.1.8 JPE
The JPE class contains a collection of ComponentArea objects. It contains a

JTabbedPane where each tab contains a ComponentArea object. The JPE class also
provides handlers for the Ul menus and buttons.

2.2 Class Diagram

< > [B | i instances Class A contain j instances of Class B
1)

d B | Class A extends Class B

The following captures a high level view of the main class diagram implemented in
CARTS 1.0.

21

Component Area

JPE

Convert To XML()

Convert To Tree()

1T1 Tl

¢1 1

Scheduling Tree J Component Tree Ul

1 KK

Scheduling Component J

Apply Process Model()
Convert To XML()

Convert To Tree() Component Menu

v

J

SpON 981 S|qeINAl Inesed

Convert To XML()
1

Convert To Tree()

Display Output()

Write Output XML()

22

2.3 Scheduling Algorithms

The CARTS tool presently implements three analysis techniques for generating
component interfaces; namely, Periodic resource model based approach [3]
(Periodic.java, EDFSchedulability periodic.java, DMSchedulability periodic.java),
EDP resource model based approach [1] and ARINC-653 (avionics real-time
operating system standard) specific approach [2] (ARINC.java). This section does
not present details of any of these techniques, but only focuses on how these
techniques have been implemented in the CARTS tool. It is expected that the reader
of this document is familiar with the aforementioned scientific publications.

Each approach implements three main functions; abstractionProcedure,
generatelnterface and transformlnterface. Since these functions are similar in
each of the three approaches, we will only focus on the Periodic resource model
based approach in this documentation.

2.3.1 abstractionProcedure
Input: A SchedulingComponent object c.
Output: None.

For each child of c that is also a SchedulingComponent object, the function iteratively
calls itself using the child object as input. When all these iterative calls return,
interfaces have been generated for all the SchedulingComponent objects which are
present in the subtree rooted at c. In particular, for all the

children of c that are SchedulingComponent objects, their ProcessedTaskList data
structure contains the interface tasks. That is, it contains the list of tasks generated
from Periodic resource models (one for each period value in the range
[MinimumPeriod, MaximumPeriod]) that will be presented to c.

The tasks in the workload of ¢ comprises of all the tasks in the TaskList data
structure as well as specific tasks from the ProcessedTaskList data structure of its
children. If MinimumPeriod = MaximumPeriod for each SchedulingComponent
object, then each ProcessedTaskList data structure contains only one task and that
will be in the workload of c. On the other hand, if MinimumPeriod is not equal to
MaximumPeriod, then the tool enforces the condition that MinimumPeriod and
MaximumPeriod be identical for each SchedulingComponent object in the entire
system. In this case, we match the interface period of ¢ with the period of the tasks
from the ProcessedTaskList data structure of its children. That is, for each period
value i in the range [MinimumPeriod, MaximumPeriod], the workload of c
comprises of all the tasks in the TaskList data structure and one task with period i
from the ProcessedTaskList data structure of each of its children.

Function abstractionProcedure first invokes function generatelnterface and then
invokes function transformlInterface for each period value i. generatelnterface

23

returns a periodic resource model with period i, which is then transformed into a
periodic task with period i by function transformInterface. The resource model is
stored in the ResourceModelList data structure and the transformed task is stored
in the ProcessedTaskList data structure of object c. Further, if ¢ has a parent
SchedulingComponent object, then the tasks in ProcessedTasKkList are also copied
in the ChildrenToTaskTable data structure of the parent. Finally, the Processed
boolean variable of c is set to true so that appropriate visual cues can be given in the
GUI indicating that c has been processed.

2.3.2 generatelnterface and transformlnterface
2.3.2.1 generatelnterface

Input:
1. Period value i for periodic resource model.
2. A SchedulingComponent object c.

Output: A ResourceModel object characterizing a periodic resource model with
period i. This resource model is guaranteed to satisfy schedulability conditions for ¢
as specified in this scientific publication [3].

Depending on the scheduling algorithm employed by object c (edf or dm), function
generatelnterface invokes function getBandwidth of either class
EDFSchedulability_periodic ~ or class = DMSchedulability_periodic. =~ Function
getBandwidth takes as input c and i, and generates as output the bandwidth
required from a periodic resource model with period i to schedule object c. In other
words, getBandwidth implements the schedulability tests from [3] (Theorem 1 by
EDFSchedulability_periodic and Theorem 2 by DMSchedulability_periodic). This
resource model bandwidth is then used to generate the appropriate periodic
resource model using one of the constructors of class ResourceModel.

2.3.2.2 transformInterface

Input:

1. A ResourceModel object r characterizing a periodic resource model.
2. Period value i for the periodic task that will be generated.

3. A SchedulingComponent object c.

Output: A Task object characterizing a periodic task with period i. This task is
obtained from resource model r using techniques specified in [3].

Depending on the scheduling algorithm employed by object c (edf or dm), function
transformInterface invokes either function T_EDF of class EDF-Schedulability-
periodic or function T_DM of class DMSchedulability_periodic. These functions take
as input c and i, and generate as output a periodic task with period i such that the
amount of resource required by the task is at least as much as the amount of

24

resource required by r. In other words, these functions implement the
transformation from resource model to tasks specified in [3].

2.4 Data Flow

This section gives a general idea of flow of data among the objects of the classes
explained.

2.4.1 CARTS XML to Tree View

[Open a CARTS XML file 0}
[Convert XML to Tree ﬂ f

JPE J

[Pathnameofthefile a

4

ComponentArea J

N r
[Scheduling Tree Object e \ |e Path name of the file]
) ;
- JEditTextArea
ComponentTreeUl (XML Editor)

[Scheduling Tree Object q / (Path name of the file]

XMLlInterpreter J

25

2.4.2 Add/ Update/ Remove operations on Tree View

—
(1

ComponentTreeUl Jq

SchedulingTree J

Add/Update/Remove Added/Updated/Removed Component
Component /Task,
Add/Update/Remove Task Parent Component

2.4.3 Apply Algorithms through Tree View

a
a Select a Component
L Select a Process Algorithm

/,

ComponentTreeUl ‘ SchedulingTree
S—

Selected Component,

L Selected Process Algorithm p
P Selected Component

@ SchedulingTree Reference 4

(Component on which the
algorithm was run and its Periodic / EDP / ARINC

/ descendant components have the Algorithm
Interface Model Values)

- CAnalySiSD
Output J
\ /

0 Resource Model
rocessed Task Model

SchedulingComponent

!

26

2.4.4 View SDF /DBF Graphs

‘ji ‘ ComponentTreeUl ‘ CartsGraph

Select a Component
Choose to view SDF/DBF

Scheduling Tree Reference

(Component on which the
algorithm was run and its
descendant components have the
Interface Model Values)

2.5 Source Code

The source code has been divided into 3 main groups. Packages whose names start
with -

* com - contains the open source code from JPE. Only the features which are
desired in CARTS 2.0 have been retained.

> com.jpe - The JPE class has been modified to accommodate the Scheduling
Tree GUI (Tree View) in JPE Editor.

* edu
> edu.penn.rtg.schedulingapp - basic Scheduling Tree data structure
implementation.

> edu.penn.rtg.schedulingapp.algo - scheduling algorithm implementation.
> edu.penn.rtg.schedulingapp.input.treeGUI - GUI for scheduling Tree.

> edu.penn.rtg.schedulingapp.input.treeGUILdialog - source code for GUI
dialog on add/update/edit Scheduling Components and Tasks.

> edu.penn.rtg.schedulingapp.xml - XML interpreter to parse CARTS XML file.

> edu.penn.rtg.schedulingapp.output - source code on GUI rendering of
analysis output.

> edu.penn.rtg.schedulingapp.output.graph - source code on plotting graph
for analysis output.

* ptolemy - contains source code on graph which is used to render the analysis
results from Scheduling Tree.

27

PART II1

Extension to CARTS

28

The following gives a list of changes one has to do in source code whenever a new
field/algorithm is added to CARTS.

1. Add New Fields

1.1 Add new fields to Scheduling Component

Basic Changes

1.
2.

3.

Add the new field in SchedulingComponent class.

Add the new field as an argument to the constructor taking values for other
fields. Initialize the new field in the constructor.

Add set and get functions to the class if needed.

Add the field to updateComponent method and update the field with the new
value.

Add the new field in writing the SchedulingComponent in the XML file.

Add the new field to replyFromAddCompDialog function and use it to make
the new SchedulingComponent object

Add the new field into AddComponentDialog.

In the handler for OK, read the value of the field and pass the field to
replyFromAddCompDialog function.

Add the new field to replyFromEditCompDialog function. Add the field as an
argument to updateComponent method.

1.2 Add new fields to Task

Basic Changes

1.
2.

GUI

Add the new field in Task class.
Add the new field as an argument to the constructor taking values for other
fields. Initialize the new field in the constructor.

3. Add set and get functions to the class if needed.
4.
5. Add the new field in writing the Task in the XML file.

Add the field to updateTask method and update the field with the new value.

Add the new field to replyFromAddTaskDialog function and use it to make
the new Task object.

Add the new field into AddTaskDialog box

In the handler for the dialog OK, read the value of the field and pass the field
to replyFromAddTaskDialog function.

Add the new field to replyFromEditTaskDialog function. Add the field as an
argument to updateTask method.

29

2. Add New Algorithms

Basic Changes
1. Add a new class for the new algorithm to edu.penn.rtg.schedulingapp.algo
package.
2. Add a process function in SchedulingTree class.

CLI
1. Add the new algorithm as an option that can be given as command line
argument.
GUI
1. Add the new algorithm as an option in the popup menu in
createPopupComponentMenu.
Add a new handler for the algorithm in ComponentUI
3. Add changes to ComponentMenu handler to call the handler when the user
chooses the new algorithm in the menu.

N

Output

Presently the analysis output is rendered as a Tree in GUIL The output can also be
saved as an XML. The present tree output can be replaced with any other renderer,
provided the new renderer implements displayOutput method which is defined in
the Outputl interface file.

If any new field is to be added to the output, they will be read automatically,

provided they are given in the present Processes Task/Resource Model output
structure. The field will also be written into the XML file.

30

REFERENCES

[1] Arvind Easwaran, Madhukar Anand, and Insup Lee. Compositional analysis
framework using EDP resource models. In Proceedings of IEEE Real-Time Systems
Symposium, pages 129-138, 2007.

[2] Arvind Easwaran, Insup Lee, Oleg Sokolsky, and Steve Vestal. A compositional
scheduling framework for digital avionics systems. In Proceedings of IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications, 2009.

[3] Insik Shin and Insup Lee. Periodic resource model for compositional realtime
guarantees. In Proceedings of IEEE Real-Time Systems Symposium, pages 2-13,
2003.

CONTACT INFORMATION

For more information on CARTS, email to: carts@seas.upenn.edu

31

CARTS

http://rtg.cis.upenn.edu/carts

32

