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Motivation and Goal 

•  Embedded systems are becoming complex, networked, and large
-scale. 

•  Embedded systems have many para-functional aspects: 
–  physically coupled, real-time, location-aware, resource

-constrained, heterogeneous, and etc. 
–  real-time: required to react to events or complete tasks in specific

 time 
–  resource-constrained: subject to operating with scarce resources,

 such as processor power, memory, power, bandwidth 
•  Component-based approach for the design of large complex systems 

–  Interoperability, predictability, scalability,… 
•  Goal: resource-sensitive component framework 

–  Hierarchical, compositional, incremental 
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Component technologies 
•  Enable component-based development 

– abstract components through interfaces 
•  Interfaces preserve intellectual property 

– compose components preserving
 compositionality 

–  facilitate modularity, portability, and reusability 
•  Traditional focus: functional, behavioral aspects 

– need: non-functional aspects,  such as
 timeliness, reliability, safety, and resource use 
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ARINC 653: Schedulability 

Partition 1 Partition 2 Partition n . . . 

Core module hardware 

P11 ,…,P1m1 P21 ,…,P1m2 Pn1 ,…,Pnmn 

Partition level schedule 

Process level schedules 
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Abstraction and Composition 
•  Abstraction Problem: abstract the real-time

 application as a component with an interface 

•  Compute the minimum real-time requirements
 necessary for guaranteeing the schedulability of a
 component 

Periodic
 (10,2)  

EDF 

Periodic
 (15,2)  

Component
 interface 
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Abstraction and Composition 
•  Composition Problem: compose component-level

 properties into system-level (or next-level
 component) properties 

component 
interface 

component 
interface 

component 
interface 

scheduling  
algorithm 
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Compositionality 
•  Compositionality:  

–  system-level properties can be established by
 composing independently analyzed component-level
 properties 

•  Compositional reasoning based on assume/guarantee
 paradigm 
–  components are combined to form a system such that

 properties established at the component-level still hold
 at the system level. 

•  Compositional schedulability analysis using the demand
/supply bounds 
–  Establish the system-level timing properties by

 combining component-level timing properties through
 interfaces 
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Resource Satisfiability Analysis 

•  Given a task set and a resource model,
 resource satisfiability analysis is to determine if,
 for every time,  

resource demand, 
which a task set needs

 under  
a scheduling algorithm 

(minimum possible)  
resource supply ≤ 
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Hierarchical Scheduling Framework 

•  Resource allocation from 
parent to child 

•  Notations 
–  Leaf → C1, C2, C3 
– Non-leaf → C4, C5 
– Root → C5 

   ARINC 653 → Two-level 
hierarchical framework 

C1 
EDF 

C2 
DM 

C4 
EDF 

C3 
EDF 

C5 
DM 

Periodic tasks Sporadic tasks 

Sporadic tasks 
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OS Scheduler’s Viewpoint 

CPU 

OS Scheduler  

Java Virtual Machine 

J1(50,3) J2(75,5) 

VM Scheduler  

Multimedia 

T2(33,10) 

Digital
 Controller 

T1(25,5) Real-Time Task 

Real-Time  
Demand 



Resource Demand Models 
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Real-time demand composition 
•  Combine real-time requirements of multiple tasks

 into real-time requirement of a single task 

Real-Time  
Constraint 

Real-Time  
Constraint 

Real-Time 
Constraint 

Periodic  
Task 

Periodic  
Task 

Periodic 
Task 

EDF / RM 
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Non-composable periodic models? 
•  What are right abstraction levels for real-time components? 

     (period, execution time) 

•  P1 = (p1,e1); e.g., (3,1) 
•  P2 = (p2,e2); e.g., (7,1) 
•  What is P1 || P2? 

–  (LCM(p1,p2), e1*n1 + e2*n2); e.g., (21,10)                                   
 where n1*p1 = n2*p2 = LCM(p1,p2) 

•  What is the problem? 
–  beh(P1) || beh(P2) = beh(P1||P2)? 

•  Compositionality 
–  (P1 || P2) || P3 = P || P3, where P = P1 || P2 
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Resource Demand Bound 
•  Resource demand bound during an interval of length t 

–  dbf(W,A,t)  computes the maximum possible resource demand
 that W requires under algorithm A during a time interval of
 length t 

•  Periodic task model T(p,e) [Liu & Layland, ’73] 
–  characterizes the periodic behavior of resource demand with

 period p and execution time e 
–  Ex: T(3,2) 
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•  For a periodic workload set W  = {Ti(pi,ei)},  
–  dbf (W,A,t) for EDF algorithm  [Baruah et al.,‘90] 

Demand Bound - EDF 

€ 

dbf (W,EDF,t) =
t
pi
 

 
 

 

 
 

Ti∈W
∑ ⋅ ei
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Demand-based Schedulability Analysis 
•  A periodic task set is schedulable under EDF 

    if and only if                dbf(t) ≤ t ≤ 

€ 

∀t > 0
over the periodic resource model Γ(P,Q) 

[Baruah, et. al., ‘90] 

t 
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dbf(t) 

lsbf(t) 
[Shin and Lee, 2003] 

lsbf(t) 
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Demand bound revisited 
•  More than one resource model may be used 

– Consider only LSBF that intersect DBF 
•  An “optimal” choice from the component

 perspective may be globally unsuitable 

t 

re
so

ur
ce

 

dbf(t) 

lsbf(t) 
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Task (resource demand) representations 



Resource Supply Models 



6/2/09 S5 20 

Resource Modeling 

•  Dedicated resource : always available at full capacity 

•  Shared resource : not a dedicated resource 
–  Time-sharing  : available at some times 

–  Non-time-sharing : available at fractional capacity 

0 time 

0 time 

0 time 
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Resource Modeling 
•  Time-sharing resources 

–  Bounded-delay resource model [Mok et al., ’01] 
   characterizes a time-sharing resource w.r.t. a non-time-

 sharing resource 
–  Periodic resource model Γ(Π,Θ) [Shin & Lee, RTSS

 ’03] characterizes periodic resource allocations  
- EDP model [Easwaran et all, RTSS 07] 

0         1        2         3         4         5         6         7        8         9      time 
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Resource Supply Bound 
•  Resource supply during an interval of length t 

–  sbfR(t) : the minimum possible resource supply by
 resource R over all intervals of length t 

•  For a single periodic resource model, i.e., Γ(3,2) 
– we can identify the worst-case resource allocation 

0         1        2         3         4         5         6         7        8         9        10   
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Resource Supply Bound 
•  Resource supply during an interval of length t 

–  sbfΓ(t) : the minimum possible resource supply by
 resource R over all intervals of length t 

•  For a single periodic resource model Γ(Π,Θ) 

0         1        2         3         4         5         6         7        8         9        10   
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Resource Schedulability Analysis 
•  Schedulability analysis determines whether  

scheduler 

resource workload workload 

resource demand, 
which a workload set

 requires under  
a scheduling algorithm 

resource supply, 
which available 

 resources provide 
≤ 
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Schedulability conditions 

  

€ 

lsbfΓ (t) =
Θ
Π
(t − 2(Π−Θ)
     

)

Bandwidth Starvation length 

•  sbfΓ(t) : Supply bound function: Minimum resource
 supply of model Γ in any time interval of
 length t 

•  lsbfΓ(t) : Linear lower bound of sbfΓ(t)   
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Schedulability conditions 

sbfΓ 
lsbfΓ 

Bandwidth Θ/Π 
(slope of line)  

Starvation length 
2(Π-Θ) 



The EDP Resource Model 
•  Explicit Deadline Periodic resource 

•  Model: Ω = (Π,Θ,Δ) 
–  Explicit deadline Δ 
–  Θ resource units in Δ time units 
–  Repeat supply every Π time units 

•  Properties 
–  Periodic resource model is a EDP model with Δ = Π 
–  Maximum slack of EDP model depends on Θ and Δ for a fixed Π 
–  Slack can be controlled using Δ without changing bandwidth of

 model (within limits)  
–  Smaller bandwidth required to schedule the same component,

 when compared to periodic resource models 
–  improves precision of resource allocation 
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Supply bound function (sbfΩ) 

0 time 

Ω(5,3,4) 

4 5 9 

Starvation length = 3 
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0 time 

Γ(5,3) 

4 5 9 

Starvation length = 4 
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Bandwidth optimal interface 
•  Given component C and period Π 

– Compute Θ and Δ 

•  We use bandwidth optimality 
– Minimizes resource bandwidth Θ/Π 
– Occurs when Δ=Θ (Theorem 3.2 in RTSS’07) 
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Bandwidth optimal interface 

dbfC 

sbfΩ’ 

minimum 
bandwidth for 

model Ω’ 

Ω’ = (Π,Θ,Δ), Δ>Θ  
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Bandwidth optimal interface 

dbfC Θ  can be  
reduced 

Ω = (Π,Θ,Θ)  
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Bandwidth optimal interface 

dbfC 

sbfΩ 

bandwidth 
optimal 
model Ω  

Ω = (Π,Θ*,Θ*)  
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Bandwidth-deadline optimal 
•  Choose interface with Largest Δ among all

 bandwidth optimal interfaces 
– Reduced demand for composition 

•  Interface generation procedure 
– Set Δ=Θ, compute Ω = (Π,Θ*,Θ*) 
– Set Θ=Θ*, compute Ω* = (Π,Θ*,Δ*)  
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Applying to ARINC 653 
•  2-level hierarchical scheduler 

–  Partitions scheduled among themselves at higher level 
–  Processes within each partition scheduled at lower level 

•  Uniqueness of ARINC 653 
–  Harmonic partition periods 
–  Preemption and blocking overheads 
–  Communication dependencies across partitions 

•  Process workload (dbf) depends on parameters which in turn are
 determined by these dependencies 

•  Appling to real ARINC workloads obtained from Honeywell 
–  Preliminary results showed an improvement of up to 300% in

 bandwidth, depending on period of interfaces for 5-6 partitions,
 with 1-5 tasks each 

•  Tool (called CARTS) development underway to handle more extensive
 workloads 
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Example: ARINC workload 
•  Process parameters: (O,J,T,C,D) 

– O = Offset, J = Jitter, T = Period, C = Worst
-case execution time, D = Deadline 

– T,C,D from workload, O added speculatively 

•  Example 1 
 Partition 1: {(2,0,25,1.4,25), (3,0,50,3.9,50)} 
 Partition 2: {(0,0,50,2.8,50)} 
 Partition 3: {(0,0,50,1.4,50)} 
 Partition 4: {(3,0,25,1.1,25), (5,0,50,1.8,50), (11,0,100,2,100),  

  (13,0,200,5.3,200)} 
 Partition 5: {(2,0,50,1.3,50), (14,0,200,1.5,200)} 
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Resource Supply Models 

Tree schedule 

Periodic model 

EDP model 

Recurring branching  
resource supply model 

ACSR+ 

Bounded-delay 
Resource model 

Cyclic Executive 
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Incremental Analysis 

C3 
DM R3 

τ1 

C1 
EDF R1 

τ2 

C2 
EDF  R2  

Incremental analysis  
R3’ should be same 

irrespective of order in  
which τ2’ and τ4 are added 

τ4 

C4 
EDF  R4  

τ2’ 

C2 
EDF  R2’  

C3 
DM R3’ 

Associative composition 
guarantees incremental 

analysis 
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Multicore Processor Virtualization 

Scheduler  

CPU 

1.  Compositional analysis of hierarchical multiprocessor real-time systems,
 through component interfaces 

2.  Using virtualization to develop new component interface for multiprocessor
 platforms 

Task Task 

S 

interface 

Task Task 

S 

interface 

Task Task 

S 

interface 

CPU CPU Virtual CPU 
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Partitioned Scheduling 

1 

τx1 

2 m .  .  . Physical processors 

τx2 τxm .  .  . Task clusters 

τx1 
∪ τx2 

…
 
∪

 
τxm 

= τ 

τxi 
∩ τxj  

= φ for all i and j 
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Global Scheduling 

1 

τ 

2 m .  .  . Physical processors 

Single task cluster 
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Multiprocessor Scheduling 
•  Goal: Optimal scheduling algorithms and their

 analysis techniques 

•  Partitioned vs. Global Scheduling 
–  Shown using simulations[Baker05] that partitioned performs

 better 
–  Exists task sets schedulable by global but not by any

 partitioned algorithm 
–  EDF load bounds: 1/2(m - (m-1)δmax)[partitioned] vs. (m -

 (m-1)δmax)(1-δmax)[global] 

•  Our Approach: Framework for development of
 scheduling algorithms that support general task
-processor mappings through virtualization  
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Virtual Clustering Interface 

1 

τx1 

2 m .  .  . Physical processors 

τx2 τxk .  .  . Task clusters 

τx1 
∪ τx2 

…
 
∪

 
τxk 

= τ 

τxi 
∩ τxj  

= φ for all i and j 

Virtual processors Γ1 Γ2 Γk .  .  . 
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Virtual Clustering Interface 

For each Γi, mi (<= m) is maximum number of physical  
processors that can be assigned to Γi at any instant 

Γ1(m1) Γ2(m2) Γk(mk) .  .  . 

1 

τx1 

2 m .  .  . Physical processors 

τx2 τxk .  .  . Task clusters 

Virtual processors 
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Virtual Clustering 
•  Task set and number of processors 
‒  τ1=τ2=τ3=τ4=(3,2,3), τ5=(6,4,6), and τ6=(6,3,6), m=4 

•  Schedule under clustered scheduling 
‒  τ1, τ2, τ3 scheduled on processors 1 and 2 
‒  τ4, τ5, τ6 scheduled on processors 3 and 4 

6/2/09 S5 

0            1           2           3            4           5            6 

Processor 1 

Processor 2 

Processor 3 

Processor 4 

τ1 τ1 

τ5 τ5 

τ2 

τ2 

τ3 τ3 

τ4 τ4 

τ1 τ1 

τ2 

τ2 

τ3 τ3 

τ4 τ4 

τ5 τ5 

τ6 

τ6 τ6 
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Virtual Clusters 
•  Use platform virtualization to provide a trade-off

 between resource utilization and scheduling
 complexity 

– Cluster interface: (Γ,m) 
•   Γ is the resource model, m is the maximum number

 of physical processors available 
–  Inter-cluster scheduling is optimal 

partitioned 
scheduling: 

low utilization, 
easy to compute 

global 
scheduling: 

high utilization, 
hard to compute 

cluster-based 
scheduling: 

small clusters => partitioned, 
large clusters => global 
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Virtual Clustering 
•  Two-level hierarchical scheduler 

–  Intra-cluster schedulers for tasks within clusters 
–  Inter-cluster schedulers for clusters on the platform  

 (clusters can share some physical processors) 

•  Concurrency bound for each cluster 
–  Abstract concurrency constraints of tasks within cluster 
–  Minimizes overhead of schedulability analysis (e.g., Global

 EDF) 
–  Helps regulate resource access (e.g., Caches?) 

•  Have virtual clusters been used before? 
–  Supertasks[MoRa99], Megatasks[ACD06]  
–  Results restricted to Pfair schedulers (not generalizable) 
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Need for Multiprocessor Periodic Resource (MPR)
 model 

C1 C2 Ck 

Multiprocessor Platform-S 

S1 S2 Sk 

τx1 τx2 τxk 

Γ1(Π1,Θ1) Γ2(Π2,Θ2) Γk(Πk,Θk) 

. . . 
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Multiprocessor Periodic Resource (MPR)
 model 
•  Γ = (Π, Θ,,m’) 

–  Θ units of resource supply guaranteed in every Π time units, with
 concurrency at most m’ in any time instant 

•  Consider Γ = (5, 12, 3) 

•  Why MPR model? 
–  Periodicity enables transformation of MPR model to periodic tasks

 which can be scheduled using standard algorithms 

0            1           2            3            4           5            6           7            8           9          10 

Processor 2 

Processor 3 

Processor 4 

Γ Γ  Γ  Γ  Γ  Γ  Γ  Γ  Γ  Γ 

Γ  Γ  Γ  Γ 

Γ 

Γ  Γ 

Γ 

Γ  Γ 

Γ Γ Γ Γ 
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Virtual Cluster-based Scheduling 
1.  Split task set τ into clusters τx1

, …, τxk 

2.  Abstract τxi
 into MPR interface Γi (for cluster VCi) 

3.  Transform each Γi into periodic tasks 
•  Enables inter-cluster scheduler to schedule Γi 
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Summary on Virtual Clustering 

•  Virtual cluster-based multiprocessor scheduling 

–  Transforms tasks from constrained to implicit deadline 
•  Optimal inter-cluster scheduling techniques can be employed  

–  Allows processor slack from one cluster to be used by another 
–  Shows promise w.r.t. success of simple clustering techniques 

•  Open issues 
–  Efficient clustering techniques for constrained and arbitrary

 deadline task systems 
•  With an aim to solve the important open problem of optimal

 scheduling of arbitrary deadline periodic task systems 

–  Including other resources such as caches  
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CARTS: Compositional Analysis
 of Real-Time Systems  
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Execution Demands for VM and OS
 Schedulers 

OS Scheduler(EDF)

(5,4.38)


VM Scheduler (RM)

(5,1.86)


Digital
 Controller


(25,5)


Task 1

(25,4)


Task 2

(40,5)


Multimedia

(33,10)
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System Modeling in CARTS


•  Tree representation 
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System Modeling in CARTS


•  XML representation 
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Analysis in CART
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CARTS 

Supports 
•  Task & Resource Models 

–  Periodic 
–  Explicit Deadline Periodic

 (EDP) 

•  Scheduling Policies 
–  Rate monotonic 
–  Earlies Deadline First

 (EDF) 
–  Others planned 

•  Open architecture 

Features 
•  Editor for demand-supply

 XML files 
•  Tree representation of

 components and tasks 
•  Editing components/tasks

 in the tree 
•  Conversion from XML to

 tree representation and
 vice versa 

•  AADL output planned 
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Summary 
•  Periodic Resource Model 
•  Explicit Deadline Resource (EDP) Model 
•  Incremental Analysis 
•  Resource Optimality 
•  Virtual Clustering for Mutlicore Processors 
•  Toolset: CARTS 
•  Compositionality in Multimode Real-Time Systems 
•  Looking for Case Studies 
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Thank You!  

Questions? 


