

A Compositional Analysis Framework for Hierarchical and Partitioned Real -Time Systems

Insup Lee *PRECISE Center* Department of Computer and Information Science University of Pennsylvania

June 2, 2009

AFOSR FA9550-07-1-0216 (PM: Dr. David Luginbuhl)

Motivation and Goal

- Embedded systems are becoming complex, networked, and large -scale.
- Embedded systems have many para-functional aspects:
 - physically coupled, real-time, location-aware, resource
 -constrained, heterogeneous, and etc.
 - real-time: required to react to events or complete tasks in specific time
 - resource-constrained: subject to operating with scarce resources, such as processor power, memory, power, bandwidth
- Component-based approach for the design of large complex systems
 - Interoperability, predictability, scalability,...
- Goal: resource-sensitive component framework
 - Hierarchical, compositional, incremental

Component technologies

- Enable component-based development
 - abstract components through interfaces
 - Interfaces preserve intellectual property
 - compose components preserving compositionality
 - facilitate modularity, portability, and reusability
- Traditional focus: functional, behavioral aspects
 - need: non-functional aspects, such as timeliness, reliability, safety, and resource use

ARINC 653: Schedulability

Core module hardware

Abstraction and Composition

• Abstraction Problem: abstract the real-time application as a component with an interface

 Compute the minimum real-time requirements necessary for guaranteeing the schedulability of a component

Abstraction and Composition

 Composition Problem: compose component-level properties into system-level (or next-level component) properties

Compositionality

- Compositionality:
 - system-level properties can be established by composing independently analyzed component-level properties
- Compositional reasoning based on assume/guarantee paradigm
 - components are combined to form a system such that properties established at the component-level still hold at the system level.
- Compositional schedulability analysis using the demand /supply bounds
 - Establish the system-level timing properties by combining component-level timing properties through interfaces

Resource Satisfiability Analysis

 Given a task set and a resource model, resource satisfiability analysis is to determine if, for every time,

resource demand, which a task set needs under a scheduling algorithm

<

(minimum possible) resource supply

Hierarchical Scheduling Framework

 Resource allocation from parent to child

Notations

- Leaf \rightarrow C₁, C₂, C₃
- Non-leaf \rightarrow C₄, C₅

$$-\operatorname{Root} \rightarrow C_5$$

ARINC 653 → Two-level hierarchical framework

OS Scheduler's Viewpoint

Resource Demand Models

Real-time demand composition

• Combine real-time requirements of multiple tasks into real-time requirement of a single task

Non-composable periodic models?

• What are right abstraction levels for real-time components?

(period, execution time)

- P1 = (p1,e1); e.g., (3,1)
- P2 = (p2,e2); e.g., (7,1)
- What is P1 || P2?
 - (LCM(p1,p2), e1*n1 + e2*n2); e.g., (21,10) where n1*p1 = n2*p2 = LCM(p1,p2)
- What is the problem?

- beh(P1) || beh(P2) = beh(P1||P2)?

Compositionality

- (P1 || P2) || P3 = P || P3, where P = P1 || P2

Resource Demand Bound

- Resource demand bound during an interval of length t
 - dbf(W,A,t) computes the maximum possible resource demand that W requires under algorithm A during a time interval of length t
- Periodic task model T(p,e) [Liu & Layland, '73]
 - characterizes the periodic behavior of resource demand with period p and execution time e
 - Ex: T(3,2)

Demand Bound - EDF

- For a periodic workload set *M* = {Ti(pi,ei)},
 - dbf (*W*,*A*,*t*) for EDF algorithm [Baruah et al., '90]

Demand-based Schedulability Analysis

Penn

A periodic task set is schedulable under EDF over the periodic resource model Γ(P,Q)
 if and only if ∀t > 0 dbf(t) ≤ t ≤ lsbf(t)

Demand bound revisited

- More than one resource model may be used
 Consider only LSBF that intersect DBF
- An "optimal" choice from the component perspective may be globally unsuitable

Task (resource demand) representations

Sporadic task model, implicit deadlines

Resource Supply Models

Resource Modeling

• Dedicated resource : always available at full capacity

• Shared resource : not a dedicated resource

- Time-sharing : available at some times

6/2/09

Resource Modeling

- Time-sharing resources
 - Bounded-delay resource model [Mok et al., '01]
 characterizes a time-sharing resource w.r.t. a non-timesharing resource
 - Periodic resource model $\Gamma(\Pi, \Theta)$ [Shin & Lee, RTSS '03] characterizes periodic resource allocations
 - EDP model [Easwaran et all, RTSS 07]

Resource Supply Bound

- Resource supply during an interval of length t
 - sbf_R(t) : the minimum possible resource supply by resource R over all intervals of length t
- For a single periodic resource model, i.e., Γ(3,2)
 - we can identify the worst-case resource allocation

Resource Supply Bound

- Resource supply during an interval of length t
 - $sbf_{\Gamma}(t)$: the minimum possible resource supply by resource R over all intervals of length t
- For a single periodic resource model $\Gamma(\Pi,\Theta)$

sbfr(t) =
$$\begin{cases} t - (k+1)(\Pi - \Theta) & \text{if } t \in [(k+1)\Pi - 2\Theta, (k+1)\Pi - \Theta] \\ (k-1)\Theta & \text{otherwise} \end{cases}$$

Penr **Resource Schedulability Analysis**

Schedulability analysis determines whether

Engineering

Schedulability conditions

- $sbf_{\Gamma}(t)$: Supply bound function: Minimum resource supply of model Γ in any time interval of length t
- $lsbf_{\Gamma}(t)$: Linear lower bound of $sbf_{\Gamma}(t)$

Schedulability conditions

The EDP Resource Model

- Explicit Deadline Periodic resource
- Model: $\Omega = (\Pi, \Theta, \Delta)$
 - Explicit deadline Δ
 - Θ resource units in Δ time units
 - Repeat supply every Π time units

• Properties

- Periodic resource model is a EDP model with $\Delta = \Pi$
- Maximum slack of EDP model depends on Θ and Δ for a fixed Π
- Slack can be controlled using Δ without changing bandwidth of model (within limits)
- Smaller bandwidth required to schedule the same component, when compared to periodic resource models
- improves precision of resource allocation

Supply bound function (sbf_{Ω})

6/2/09

28

• Given component C and period Π – Compute Θ and Δ

- We use bandwidth optimality

 Minimizes resource bandwidth Θ/Π
 - Occurs when $\Delta = \Theta$ (*Theorem 3.2 in RTSS'07*)

Bandwidth-deadline optimal

 Choose interface with Largest ∆ among all bandwidth optimal interfaces

Reduced demand for composition

Interface generation procedure

 Set Δ=Θ, compute Ω = (Π,Θ*,Θ*)
 Set Θ=Θ*, compute Ω* = (Π,Θ*,Δ*)

Applying to ARINC 653

- 2-level hierarchical scheduler
 - Partitions scheduled among themselves at higher level
 - Processes within each partition scheduled at lower level
- Uniqueness of ARINC 653
 - Harmonic partition periods
 - Preemption and blocking overheads
 - Communication dependencies across partitions
 - Process workload (dbf) depends on parameters which in turn are determined by these dependencies
- Appling to real ARINC workloads obtained from Honeywell
 - Preliminary results showed an improvement of up to 300% in bandwidth, depending on period of interfaces for 5-6 partitions, with 1-5 tasks each
- Tool (called CARTS) development underway to handle more extensive workloads

Example: ARINC workload

- Process parameters: (O,J,T,C,D)
 - O = Offset, J = Jitter, T = Period, C = Worst-case execution time, D = Deadline
 - T,C,D from workload, O added speculatively
- Example 1

Partition 1: {(2,0,25,1.4,25), (3,0,50,3.9,50)} Partition 2: {(0,0,50,2.8,50)} Partition 3: {(0,0,50,1.4,50)} Partition 4: {(3,0,25,1.1,25), (5,0,50,1.8,50), (11,0,100,2,100), (13,0,200,5.3,200)} Partition 5: {(2,0,50,1.3,50), (14,0,200,1.5,200)}

Resource Supply Models

Incremental Analysis

6/2/09

Multicore Processor Virtualization

- 1. Compositional analysis of hierarchical multiprocessor real-time systems, through component interfaces
- 2. Using virtualization to develop new component interface for multiprocessor platforms

6/12/023, 2008

Partitioned Scheduling

Global Scheduling

Multiprocessor Scheduling

- Goal: Optimal scheduling algorithms and their analysis techniques
- Partitioned vs. Global Scheduling
 - Shown using simulations^[Baker05] that partitioned performs better
 - Exists task sets schedulable by global but not by any partitioned algorithm
 - EDF load bounds: 1/2(m (m-1) δ_{max})[partitioned] vs. (m (m-1) δ_{max})(1- δ_{max})[global]
- Our Approach: Framework for development of scheduling algorithms that support general task -processor mappings through virtualization

Virtual Clustering Interface

Virtual Clustering Interface

Virtual Clustering

- Task set and number of processors
 - $\tau_1 = \tau_2 = \tau_3 = \tau_4 = (3, 2, 3), \tau_5 = (6, 4, 6), \text{ and } \tau_6 = (6, 3, 6), \text{ m=4}$
- Schedule under clustered scheduling
 - = τ_1 , τ_2 , τ_3 scheduled on processors 1 and 2
 - = τ_4 , τ_5 , τ_6 scheduled on processors 3 and 4

Virtual Clusters

 Use platform virtualization to provide a trade-off between resource utilization and scheduling complexity

– Cluster interface: (Γ,m)

- Γ is the resource model, m is the maximum number of physical processors available
- Inter-cluster scheduling is optimal

Virtual Clustering

- Two-level hierarchical scheduler
 - Intra-cluster schedulers for tasks within clusters
 - Inter-cluster schedulers for clusters on the platform (clusters can share some physical processors)
- Concurrency bound for each cluster
 - Abstract concurrency constraints of tasks within cluster
 - Minimizes overhead of schedulability analysis (e.g., Global EDF)
 - Helps regulate resource access (e.g., Caches?)
- Have virtual clusters been used before?
 - Supertasks^[MoRa99], Megatasks^[ACD06]
 - Results restricted to Pfair schedulers (not generalizable)

Need for Multiprocessor Periodic Resource (MPR) Engineering model

Multiprocessor Periodic Resource (MPR) Renn model

- $\Gamma = (\Pi, \Theta, m')$
 - Θ units of resource supply guaranteed in every Π time units, with concurrency at most m' in any time instant
- Consider $\Gamma = (5, 12, 3)$

- Why MPR model?
 - Periodicity enables transformation of MPR model to periodic tasks which can be scheduled using standard algorithms

Virtual Cluster-based Scheduling

- 2. Abstract τ_{x_i} into MPR interface Γ_i (for cluster **VC**_i)
- 3. Transform each Γ_i into periodic tasks
 - Enables inter-cluster scheduler to schedule Γ_i

Summary on Virtual Clustering

- Virtual cluster-based multiprocessor scheduling
 - Transforms tasks from constrained to implicit deadline
 - Optimal inter-cluster scheduling techniques can be employed
 - Allows processor slack from one cluster to be used by another
 - Shows promise w.r.t. success of simple clustering techniques
- Open issues
 - Efficient clustering techniques for constrained and arbitrary deadline task systems
 - With an aim to solve the important open problem of optimal scheduling of arbitrary deadline periodic task systems
 - Including other resources such as caches

CARTS: Compositional Analysis of Real-Time Systems

R Compositional Analysis of Real-Time Systems	
Eile Edit View Search Tools Preferences About	
OUTPUT_41.xml	
PART31_MAIN ID=1 PART36 ID=36 PART36 ID=36 PART36_FAST ID=2 PART36_FAST ID=2 PART32_Main_Process ID=1 PART32_Main_Process ID=1 PART32_Main_Process ID=3 PART32_FIZ_Process ID=3 PART32_ID=29 PART32_ID=29 PART32_ID=29 PART32_ID=29 PART32_ID=6 SESSION_2 ID=6 SESSION_2 ID=6 SESSION_2 ID=6 SESSION_2 ID=6 SESSION_2 ID=6 PART16_ID=16 PART16_ID=16 PART16_ID=16 PART16_ID=1 PART16_ID=10 PART16_ID=10	<pre> </pre>
Analysis Result with Periodic Algorithm	
Resource Model Period: 2	2500.0, Bandwidth: 25000.0, Deadline: 25000.0
Processed Task Model Period: 2	5000.0, Execution Time: 25000.0, Deadline: 25000.0
	🍈 Line: 1 of 59 Col: 0 Char: 0

Execution Demands for VM and OS Schedulers

6/2/09

System Modeling in CARTS

• Tree representation

System Modeling in **CARTS**

sim_h_periodic.xml		
<system max_period="5" min_period="5" os_scheduler="EDF"></system>		
<task d="25" e="5" name="Digital Controller" p="25"> </task>		
<task d="33" e="10" name="Multimedia" p="33"> </task>		
<pre>component name="YM Scheduler" criticality="A" vmips="0" scheduler="RM" subtype="tasks" min_period="5" max_p</pre>		
<task d="25" e="4" name="task1" p="25"> </task>		
<task d="40" e="5" name="task2" p="40"> </task>		

• XML representation

Analysis in **CART**

Eile Edit View Search Tools I □ <th>Preferences About About Second Second Seco</th>	Preferences About About Second Second Seco
task2	<task d="40" e="5" name="task2" p="40"> </task>
Analysis Result with EDP Algorithm Resource Model Period: 5.0	0, Bandwidth: 4.141267123287672, Deadline: 4.185445524085139
Processed Task Model Period: 5.0	0, Execution Time: 4.141267123287672, Deadline: 5.044178400797468

CARTS

Supports

- Task & Resource Models
 - Periodic
 - Explicit Deadline Periodic (EDP)
- Scheduling Policies
 - Rate monotonic
 - Earlies Deadline First (EDF)
 - Others planned
- Open architecture

Features

- Editor for demand-supply XML files
- Tree representation of components and tasks
- Editing components/tasks in the tree
- Conversion from XML to tree representation and vice versa
- AADL output planned

Summary

- Periodic Resource Model
- Explicit Deadline Resource (EDP) Model
- Incremental Analysis
- Resource Optimality
- Virtual Clustering for Mutlicore Processors
- Toolset: CARTS
- Compositionality in Multimode Real-Time Systems
- Looking for Case Studies

References

- A Compositional Scheduling Framework for Digital Avionics Systems, Arvind Easwaran, Insup Lee, Oleg Sokolsky, Steve Vestal, to appear in RTCSA 2009.
- Optimal Virtual Cluster-based Multiprocessor Scheduling, Arvind Easwaran, Insik Shin, and Insup Lee, to be published in Real-Time Systems Journal (RTSJ).
- On the complexity of generating optimal interfaces for hierarchical systems, Arvind Easwaran, Madhukar Anand, Insup Lee, Oleg Sokolsky, Workshop on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS 2008).
- Hierarchical Scheduling Framework for Virtual Clustering of Multiprocessors, Insik Shin, Arvind Easwaran, Insup Lee, ECRTS, Prague, Czech Republic, July 2-4, 2008 (Runner-up in the best paper award)
- Robust and Sustainable Schedulability Analysis of Embedded Software, Madhukar Anand and Insup Lee, LCTES, Tucson, AZ, Jun 12-13, 2008
- Compositional Feasibility Analysis for Conditional Task Models, Madhukar Anand, Arvind Easwaran, Sebastian Fischmeister, and Insup Lee, ISORC, Orlando, Florida, May 5-7, 2008
- Compositional Real-Time Scheduling Framework with Periodic Model, Insik Shin and Insup Lee, ACM Transactions on Embedded Computing Systems (TECS), vol 7, no 3, April 2008
- Interface Algebra for Analysis of Hierarchical Real-Time Systems, Arvind Easwaran, Insup Lee, Oleg Sokolsky, Foundations of Interface Technologies (FIT) workshop, Budapest, Hungary, April 5, 2008
- Compositional Analysis Framework using EDP Resource Models, Arvind Easwaran, Madhukar Anand, and Insup Lee, Tucson, Arizona, Dec 3-6, 2007
- Resources in process algebra, Insup Lee, Anna Philippou, Oleg Sokolsky, Journal of Logic and Algebraic Programming, Vol. 72, pp. 98-122,2007

This work was supported in part by AFOSR, NSF and ONR.

Thank You!

Questions?