Model Synthesis

New Challenges in Model Based Design

Rajeev Alur

University of Pennsylvania

Medical CPS NSF Site Visit, Jan 2012

Penn
Enginecring

Software: Key to Embedded Revolution

Software => New features, Automation, Customization

Software Bugs, Unpredictability, Recalls

Prius Brake Problems Blamed on Software Glitches

"Toyota officials described the problem as a "disconnect" in the

vehicle's complex anti-lock brake system (ABS) that causes less

than a one-second lag. With the delay, a vehicle going 60 mph will
have traveled nearly another 90 feet before the brakes begin to
take hold" (source: CNN Feb 4, 2010)

Embedded Computation

Q Typical embedded program: cruise control
Loop
Read the sensors;
Compute speed;
Compute pressure for brake pedal / accelerator;
Transmit the outputs to actuators;

Q Program has (non-terminating) interaction with the
outside world: Reactive computation

QO Correctness depends on real-time response (does the
car brake fast enough?)

QO Analysis of correctness requires modeling of the
dynamics of the car

Hybrid Systems Computer Science
* Automata/Logic

State machines + Dynamical systems * Concurrency

* Formal verification
Control Theory
Optimal control
Stability analysis
» Discrete-event system

+

x>68

on
dx/dt = kx
x<70

x<63 Software + Environment
Coordination Medical Systems
Automotive Protocols Robotics Devices Biology

Model Based Design for Embedded Software

Can we formally prove safety properties of m?glellﬁ Specification

Fnviranmont Made|

Can we infer properties of code from properties of models? -rics

Programming/Modeling Language Design and Analysis Tools
Based on Hybrid Automata Simulation, Verification, Optimization
U N Compiler + ; e
Platform Description Scheduler Libraries in Base Language

Executable Code on
Embedded Processor

=3 ‘
— 1) TS
B Reveal” e A\
4 ‘_)
o
—

Medical Devices

O From 1985-2005, nearly 30,000 deaths and 600,000

injuries from device failures

QO From 1996-2006, the percentage of software-related

causes in medical device recalls have

grown from 10% to

21% (Complexity T — Potential safety violations 1)

Q There is currently no well-established standards for
development of software for medical devices

Model-based Pacemaker So

ftware Design

Heart Pacemaker
S
Random Gy
(Heart Model) Verification
i 5 5
Virtual g o] Simulink imulati
Heart Model [2 Model Simulation
Heart Model % % Pacemaker .
Implementation § § Implementation Teshng
—_—

Heart

Model Verification

Pacemaker

Random
L Heart Model)

=

—
Virtual

Heart Model

Heart Model
Implementation

Timed-automata

Pacemaker
Implementation

soepalU|

Testing

Jiang, Pajic, Moarref, Alur, Mangharam, TACAS 2012

Model Simulation

Heart Pacemaker
Random ﬁ
L Heart Model Model VerificaTion
f_d" — —
Virtual o] g Simulink Simula‘rion
Heart Model g 3 Model
Hear . .
mple] Timing-based heart model and Testing
— interface in Simulink

Jiang, Pajic, Mangharam, ICCPS, Proc. IEEE, 2011

Model Translation and Implementation

Heart Pacemaker
)
Random Gy
Heart Model Verification
f_f'v_\ — —
Virtual & g Simulink imulati
Heart Model €8 g Model Simulation
Heart Model % % Pacemaker .
Implementation § § Implementation Tesﬁng
~—

Pajic, Jiang, Lee, Mangharam, Sokolsky, RTAS 2012

Implantable Pacemaker Modeling

Lead in
right atrium

[AR] AS

Atrium

Vs

2]
AVI unsensed

|

VP

Ventricle

extension

PVARP

PVARP |

VRP |

LRI

VRP
LRI

URI

URI |

reset

Uppaal Model of Dual Chamber Pacemaker

—— —> vs?
VS? AP! VP!
VP? < > > -> VP? URI
WaitURI
VP? clk<=TURI
t=0 t>=TAVI && clk<TURI
AS?
vs? AVI
.A@ t=0 ESTAV
=0T R VP? D@)Qsz
et Sere (<:TLRI-TAVI clk=0 k=0
VS? t=0
URI
t>=TLRI-TAVI
AP! t=0 t>=TAVI && clk>=TURI
(a) LRI component (b) AVl component (c) URI component
ade AS| Vget?
23| PvARP vrp YS!
oo ARL VP?

inter Vst

Summary of Verification Results

0 Modeled and verified a dual chamber pacemaker
and additional advanced functions

O Showed that adding new functions to the
pacemaker may result in safety violations

0 Showed that more detailed heart model is needed
for more advanced safety requirements

New Challenges: Model Synthesis

1. Can we extract (controller) models from code?
2. Can we extract (plant) models from data?

3. Can we use analysis/verification technology to
assist the designer to construct models?

1. From Code to Models

0 What if pacemaker software is not developed using MBD
¢ How to verify / certify code for pacemaker software

O Potential solution: Extract EFSM (Extended finite-
state-machine) models from code

O Starting point: Predicate abstraction used for software
verification

¢ Challenges: Extract timing properties

Model Checking of C code

Phase 1: Given a program P, build an
abstract finite-state (Boolean)
model A such that set of
behaviors of P is a subset of those
of A (conservative abstraction)

Phase 2: Model check A wrt
specification: this can prove P to
be correct, or reveal a bug in P, or
suggest inadequacy of A

Shown to be effective on
Windows device drivers in
Microsoft Research project
SLAM

dof
KeAcquireSpinLock();
nPacketsOld = nPackets;
if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;
}
Jwhile(nPackets!= nPacketsOld);
KeReleaseSpinLock();

Do lock operations, acquire and
release, strictly alternate on every
program execution?

2. From Data to Models

0 What's a good model of heart for verifying correctness
requirements of pacemaker software?

¢ Ideally, model should be patient specific

O Potential solution: Extract timed/hybrid automata models

for ECG data for a patient

O Computational challenge: Can we develop suitable learning

algorithms ?

¢ Background: L* algorithm for learning DFA

¢ Background: Learning linear constraints among variables

3. Assisting Designers in Model Construction

0 How can computational tools assist designers?
¢ Maturing verification technology, fast constraint solvers
+ Enormous computational power available

Q Goal: Allow designer to express "model under
construction” using multiple, intuitive formats

¢ Synthesis tool can integrate different formats, interactively with
designer to produce desired model

¢ EFSMs + Example scenarios + High-level requirements

O Inspiration: Emerging research in software synthesis

Sketch: Program completion
Ref: Chaudhuri, Solar-Lezama (PLDI 2010)

Err = 0.0;

When to start turning?

‘ } Backup straight

How much to turn?

}

if(stage==INTURN)
car.ang = car.ang
if(t > 2?) stage= OUTTURN;

if(stage==OUTTURN) ——
car.ang = car.ang + ??; Straighten
if(t > 2?) break; E

Turn

simulate_car(car); [

Err += check_collision(car);
} H -

Err += check_destination(car);

Enables programmers to focus on high-level solution strategy

10

Conclusions

O Model based design (MBD) is a promising approach to
design of embedded software

Q Over the past year, research at Penn has demonstrated
benefits of MBD for rigorous design of pacemaker
software

QO Synthesis has the potential to transform the way a
designer can employ MBD

11

