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Interoperability for Patient Safety 

•  Modern medical care is heavily reliant on devices 
–  Sensors: patient monitors, thermometers, glucose meters, EKG 
–  Actuators: infusion pumps, radiation therapy, pacemakers 

•  Caregiver is always in the loop 
–  Continuous monitoring is not possible 
–  Relies on alarms to detect events 

•  Alarms are frequently irrelevant (false positive) or ignored 
(alarm fatigue) 



Model-Driven Safety Analysis  
 

of Closed-Loop Medical Systems 
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Overview 

1.  Patient-in-loop Medical Case Study 

2.  Modeling and analysis 
1.  Continuous time detailed Matlab Model 
2.  Timed Automata abstract UPPAAL Model 

3.  Discussion 
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PCA Case Study 
•  Patient Controlled Analgesia 

–  Common technique for delivering pain 
medication (opiates) 

1.  Patient presses a button to request a 
dose 

2.  Overdoses result in respiratory 
distress, ultimately death 

3.  Pumps have safeguards, but 
overdoses can still happen 

4.  PCA is a significant source of 
adverse events 
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Challenges with Physiological Control Systems 

•  Patient Modeling 
–  People are unpredictable J 

•  Non-deterministic, uncertainty, variation 

–  Models do not exist or are too complex 
•  80+ states, 100s-100Ks ODEs – online model adaptation is hard 

–  Under-actuated system with limited observability 

•  Verifying Safety Properties 
–  Individual devices and whole system 

•  Physical connectivity and communication infrastructure 
 

•  Regulatory Challenges 
–  Who is the manufacturer of the composed system? 



8 

Case Study Components 

•  PCA infusion pump 
•  Pulse-Oximeter 
•  Supervisor 
•  Patient Model 



Case Study Components 
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Control Loop 

















 
 

















Supervisory Control 
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Modeling approach 

•  Matlab / Simulink model captures continuous dynamics 

•  Simulation provides timing data to tune the more abstract 
UPPAAL model 

•  Formal verification in UPPAAL 

PCA Case Study 

Timing data Matlab Model UPPAAL Model 
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3-Compartment LTI Patient Model 
Derived from pharmacokinetics model for intravenous delivery of 
anesthetic drugs 

Drug conc. 

Medication Level 
In Patient’s body 

Blood Plasma 
Volume 



3-Compartment Patient Model 
in Simulink 
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•  Captures the dynamics of the PCA pump, pulse-oximeter, patient model, 
and supervisor 

•  Defines safe, critical, and alarming regions 
•  Simulations of the model allow us to estimate tcrit 

•  Allows us to study effects of faults 



3-Compartment Patient Model 
in Simulink 
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•  Captures the dynamics of the PCA pump, pulse-oximeter, patient model, 
and supervisor 

•  Defines safe, critical, and alarming regions 
•  Simulations of the model allow us to estimate tcrit 

•  Allows us to study effects of faults 
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Patient Model 

Patient Critical Regions 

Patient Response to Drug 

t1 
t2 

tcrit Safe 

Critical 
Alarming 

First-order continuous system 
tAeCSpO α−+= min2
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Key Safety Property 
Pump stops in time if total delay <= tcrit  

  

Total delay is the sum of: 
  tPOdel: worst case delay from PO (1s) 
  tnet: worst case delay from network (0.5s) 
  tSup: worst case delay from Supervisor (0.2s) 
  tPump: worst case delay from pump (0.1s) 
  tP2PO: worst case latency for pump to stop (2s) 
  tcrit: shortest time the patient can spend in the alarming region before going critical 

Signal Processing 
Time

Pulse Oximeter

Output 
Physiological 

Signals

Drug Level

Patient Model

Drug Absorption 
Function

SpO2 & HR 
Levels Algorithm 

Processing Time

Supervisor

Pump 
Commands

PCA Pump

Pump Processing 
TimeDrug Infusion

Drug Request
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Obtaining tcrit 

•  For our patient model, determine tcrit analytically given the 
drug level (C), Heart Rate (H1), SpO2 (H2)   

•  In a more complex case, obtain through Matlab simulation 
•  For a more precise result, a modal value can be derived 

–  E.g., account for patient context such as weight. 

min2

min1log1
CH
CHtcrit −

−
=
α
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tcrit – for cases with uncertainty 
•  For the patient model with fixed parameters tcrit 

determined analytically 
•  For model with uncertain parameters 

– Matrices A, B, C belong to regions 
– Providing an upper bound on tcrit 

•  In a more complex case, obtain using Matlab simulation 
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UPPAAL Model 

Network Component 

Using Synchronous 
communication channels and 
Shared variables between 
components 
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Properties verified with UPPAAL 

X 
Safe 

Critical Alarming 

 The patient can not go into the critical region 
   A[] (samplebuffer >= critical) 

 The pump is stopped if patient enters alarming 
A[] ( samplebuffer < alarm_thresh ->  

 A<> (PCA.Rstopped V PCA.Bstopped) 

•   Once SpO2 drops below pain threshold, 
it eventually goes back up 

   A[] (samplebuffer < pain_thresh -> A <> 
samplebuffer >= pain_thresh) 

STOP 

Safe 
Critical Alarming 
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Effects of unreliable network 

•  Problem: 
–  The pump may not receive stop commands.  

•  Solution: 
–  Instead of sending simple start and stop commands, 

send a command giving the pump permission to run for 
a certain period of time. 

•  Open-loop stability 
–  We need to determine how long the pump can run 

without endangering the patient 
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System Implementation 

•  FPGA boards for the device interfaces and real-time 
network 

•  Real devices  
where possible 

•  Homegrown 
pump prototype  
for control 
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Conclusions 
•  Medical CPS offer plenty of challenging problems that 

urgently need solutions 

•  Not all of these problems are technical 
–  Some are organizational, cultural, etc. 

•  We presented first step 
–  Case study of a real clinical problem 
–  Modeling approach combines simulation and formal verification 

•  But much research is still needed 



25 

Future work 
•  Better patient model 

–  More realistic dynamics, parametric variability 
–  More sophisticated control-theoretic analysis 

•  Sensor fusion 
–  Better reliability 
–  Faster detection 

•  Safety in dynamically created scenarios 
–  Compositional reasoning? 
–  Safety case construction 

•  Modeling of clinical scenarios 
–  Workflows, requirements for devices, safety criteria 



Current and Future Research 
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•  Diabetes: a growing problem 
–  26 million (8.3% of the population) in US have diabetes 
–  7-th leading cause of death 
–  Costs $174 billion annually 
–  5-10% are Type 1 (T1D), others are Type 2 (T2D) 

•  Improved blood glucose regulation benefits  
–  maintain glucose level within certain ranges 
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Diabetes & Glucose Control Sytems 

27 

Patient 
 
 
 Infusion pumps 

 
 
 

Glucose  
Meter 
 

Caregivers or 
patient 
 
 



•  Model-based development 
–  Needs patient model and controller model 

•  Safety property: patient’s physiological states never become 
critical 
–  Hypoglycemia & Hyperglycemia 
–  In present of hazardous situations and uncertainties in 

environment, e.g., component failures, delay food feedings 

•  Validation and verification 
 

Research Objective 
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•  Modeling the human glucose-insulin dynamics 
–  60’s: simplest linear model by Bolie 
–  70’s – 80’s: minimal (coarse-grain) modeling strategy 
–  90’s – now: maximal (fine-grain) models 

•  High-order nonlinear model with many unknown parameters 
•  Not easily identifiable 
•  Man et al., 2007, meal simulation model 
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Background: Patient Model 



•  Controller: clinical guidelines 
–  5 ICU insulin infusion guidelines from a hospital 
–  programmed as rule-based controllers 
 

•  Patient model:UVa/Padova T1DM Metabolic Simulator* 
–  Based on a maximal model (Man et al., 2007) 
–  30 “virtual” subjects settings 
–  Full version (with 300 virtual subjects) approved by FDA in 2008 to 

substitute animal trials in the pre-clinical testing of certain control 
strategies 

 

•  Model-based evaluation of clinical guidelines 
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Guideline-based Controller (1) 

Guidelines controller 
 
 
 
 

Patient model 
 

 
 
 

*: © 2011, The Epsilon Group 



•  Guideline controls are not always effective 
•  Hypoglycemia (low glucose) and serious oscillations in glucose 

level observed on some virtual subjects 
–  Example:  

31 

Guideline-based Controller (2) 

0 5 10 15 20 25 30 35 40 45 500

50

100

150

200

250

Time (Hour)

 

 
target range high
target range low
Glucose level (mg/dl)
Insulin infusion rate (100mU/hour)
Insulin Bolus (10mU)
Meal (10mg/min)
Dextrose infusion (g/min)

Meals 

Glucose 
Concentration 

Insulin rate 



Some subjects are more resistant to insulin 
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Guideline-based Controller (3) 
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Some subjects are sensitive to insulin 
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Guideline-based Controller (4) 
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•  Clinical guidelines use fixed rule tables  
–  Not adaptive to inter-subject variability within the same 

patient population 
 

•  Need more effective controllers for the networked control 
system 
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Guideline-based Controller (5) 



•  Introduction 
•  Our Vision 
•  Current state of affairs 
•  Our Approaches 

–  Model-based safe adaptive/robust control 
–  Simulation/testing based verification 

Outline 
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•  Deal with physiological parameter uncertainties 
–  Adaptive approach: 

•  Adjusting controller settings at run-time 
•  Explicit adaptive control: learn model parameters at run-time 

–  Difficult for a ~20-D non-linear model with ~30 parameters  
•  Implicit adaptive control may apply 

–  Robust approach: 
•  stabilize the plant with bounded parameter uncertainties 

•  Challenges: verification of adaptive/robust controller 
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Adaptive/Robust Control 

Plant 
(Patient) Controller 

Adjusting 
Controller 
Settings 



•  Adaptive control often involves learning the parameters by 
feeding in extreme inputs 
–  Example: aggressively turning a car 

•  Not safe for patient-in-the-loop systems 
•  Open issue: adaptive exploration with safety constraints 

Safe Adaptive Exploration 
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•  Model complexity trade-off 
•  Reduction with bounded discrepancy 

Safe Non-linear Model Reduction 

Simple linear models Non-linear maximal models 

System identification 

Controller design 

Testing and verification 

Model accuracy 
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•  Introduction 
•  Our Vision 
•  Current state of affairs 
•  Our Approaches 

–  Model-based safe adaptive/robust control 
–  Simulation/testing based verification 

Outline 
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Robust Verification for Linear Systems: Example 
 

)()(
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System:	  

Step input (t > 0):	  

Steady state at t = 0:	  

Property:	  

Φ = G π1 ˄ F [0,0.85]G π2  
O(π1) = [-1.5,1.5] 
O(π2) = [0.8,1.2] 

Τ 

Initial conditions:	  

Uncertain parameters	  
e.g. C∈[a1,a2] 

This is a transmission line system. A ~80 dimension linear system. The property we want to verify is that the output y(t) globally stays within Pi_1 
(-1.5,1.5), and y(t) enters Pi_2 (0.8,1.2) within [0,0.85] time interval. Such kind of properties are closely related to common control performance metrics 
like rise time, settling time, constraints on input/state, etc. This shows the properties we are interested in and how to interpret the properties 
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Problem Formulation 

Specification Φ 
Closed-loop system Σ 
 
 
xç = f (x ; p; u) X0 ⊆ X 
y = g(x ; p; u)

L(Σ) ⊆ L(Φ) 

Robust Tester  

Fainekos, Girard and Pappas, Temporal logic verification using simulation, FORMATS 2006 
Julius, Fainekos, Anand, Lee, Pappas, Robust Test Generation and Coverage for Hybrid Systems, HSCC 2007 
Fainekos, Pappas, MTL Robust Testing and Verification for LPV Systems, ACC 2009  

Given a closed-loop system model, and a set of specifications, we want a tester to tell whether the system satisfies the 
specifications, in the sense that the set of all possible system traces is a subset of all traces on which the specifications are true  



42 

   L(Σ) ⊆ L(Φ,O) 

L(Σ’) ⊆ L(Φ,Oδ) ? 

Solution Overview 42 

Closed-loop system Σ 
 
 

δ-approximately 
bisimilar 

X0 ⊆ X 
p(t)∈P 

dx/dt = A(p(t)) x(t) 
y(t) = C x(t)  

Closed-loop system Σ’ 
 
 X’0 ⊆ X’ dx'/dt = A’ x’(t) 
y'(t) = C’ x’(t)  

δ-robustification 

Specifications 
Φ = G π1 ˄ F[0,Τ] G π2 
Observation map Oδ 

Specifications 
Φ = G π1 ˄ F[0,Τ] G π2 
Observation map O 

The key idea of our solution is: Given the original closed-loop system, where the matrix A depends on some time-varying uncertain 
parameters p(t), we first try to find a fixed linear system A’ that is a close approximation of the original system, in the sense that the 
output traces of the original system always (despite uncertain p(t)’s) stay within Delta distance to the traces of the reduced system. 
Then if we can show that the specifications are satisfied by the reduced system with some robustness constraints (explained in the 
next slide), then we can infer that the original system also satisfy the properties 
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Robust Testing – Specification Satisfied within 
the bounded region 
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ε 
ε 

ε>0 

0<δ<ε 

2δ 
Repeat with new 
initial condition until 
X0 has been covered 

Specifications 
Φ = G π1 ˄ F[0,Τ] G π2 
Observation map O 

Fainekos, Girard and Pappas, Temporal logic verification using simulation, FORMATS 2006 

This slide illustrates intuitively how the approach works: Given a system trace of the reduced system and the specifications, we have 
a software tool (next slide) to calculate a robustness bound eps, meaning that the specification is locally satisfied anywhere within 
the eps-”tube” (the region between to blue lines) around the given trace. 
Next if we can show that the “difference” between the reduced system and the original system is always within the “tube”, then it is 
inferred that the original system traces also satisfy the specifications  
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Software toolbox : TaLiRo 
44 

Input:  
Specifications 

Monitor/Tester  

Output: 
ε ∈ R ∪{±∞} 

Input:  
Discrete time signal 

Available at : http://www.seas.upenn.edu/~fainekos/robustness.html 

We have a software tool such that given a system trace and specifications, the tool calculate the 
robustness bound epsilon, meaning that the specifications are satisfied within a epsilon-tube 
around the given trace 
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Example : Nonlinear systems 
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Here is an example of extending the approach to simple non-linear systems: In the model, the only non-linear term is sin2(x2), rather than dealing with 
the non-linear system, we transform the system into a linear system with uncertain parameters, by replacing sin2(x2) with a parameter P, which is 
unknown but bounded (within [0,1]). Next, if we can show that all possible traces of the linear system (with uncertain P) satisfy the specifications, we 
know the original system also satisfy the same specifications.  



•  Possible to extend the robust verification results on linear 
systems to large non-linear systems 
–  Partition parameter space into several regions 

•  Example: highly insulin-sensitive, average, and insulin-resistant 
subjects 

 
 

–  Robustness verification within each region 
–  Adaptive exploration to determine which region a newly 

admitted subject belongs to 
•  Exploration phase must satisfy safety properties 
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Adaptive/Robust Extension 

Insulin Sensitivity Coefficient: within [3,10] 
Insulin resistant Average Insulin sensitive 
[3,5] [5,8] [8,10] 



•  Identify platform hazards in the networked control setting  
–  Develop mitigation strategies 

•  Unlike the closed-loop PCA system, where only overdosing is 
undesirable, in the BG system, both hypo- and hyper-glycaemia 
need to be avoided 

•  No trivial fail-safe mode for closed-loop BG control 

–  System-level safe 

–  ty verification and validation to show that patient safety is 
guaranteed in the networked system, even under failure 
conditions 
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Safety Analysis 


