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Overview 

1.  Medical Case Study 
2.  Modeling and analysis 

1.  Matlab Model 
2.  Uppaal Model 

3.  Discussion 
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Interoperability for Patient Safety 

•  Modern medical care is heavily reliant on devices 
–  Sensors: patient monitors, thermometers, glucose meters, EKG 
–  Actuators: infusion pumps, radiation therapy, pacemakers 

•  Caregiver is always in the loop 
–  Continuous monitoring is not possible 
–  Relies on alarms to detect events 

•  Alarms are frequently irrelevant (false positive) or ignored 
(alarm fatigue) 
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PCA Case Study 
•  Patient Controlled Analgesia 

–  Common technique for delivering pain 
medication 

1.  Patient presses a button to request a 
dose 

2.  Overdoses result in respiratory 
distress, ultimately death 

3.  Pumps have safeguards, but 
overdoses can still happen 

4.  PCA is a significant source of 
adverse events 
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Challenges 

•  Physical connectivity and communication infrastructure 

•  Patient Modeling 
–  People are unpredictable 
–  Models do not exist or are too complex 
–  Under-actuated system with limited observability 

•  Verifying Safety Properties 
–  Individual devices and whole system 

•  Regulatory Challenges 
–  Who is the manufacturer of the composed system? 
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Case Study Components 

•  PCA infusion pump 
•  Pulse-Oximeter 
•  Supervisor 
•  Patient Model 
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Control Loop 
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Modeling approach 

•  Matlab / Simulink model captures continuous 
dynamics 

•  Simulation provides timing data to tune the more 
abstract UPPAAL model 

•  Formal verification in UPPAAL 

PCA Case Study 

Timing data Matlab Model UPPAAL Model 
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Patient Model 

Patient Critical Regions 

Patient Response to Drug 

t1 
t2 

tcrit Safe 

Critical 
Alarming 

First-order continuous system 
tAeCSpO α−+= min2
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Matlab Model 

•  Captures the dynamics of the PCA pump, pulse 
oximeter, patient model, and supervisor 

•  Defines safe, critical, and alarming regions 
•  Simulations of the model allow us to estimate tcrit 

•  Allows us  
to study 
effects of  
faults 
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Key Safety Property 
Pump stops in time if total delay <= tcrit  

  

Total delay is the sum of: 
  tPOdel: worst case delay from PO (1s) 
  tnet: worst case delay from network (0.5s) 
  tSup: worst case delay from Supervisor (0.2s) 
  tPump: worst case delay from pump (0.1s) 
  tP2PO: worst case latency for pump to stop (2s) 
  tpi: worst case patient inertia- time for drug to affect the patient (10s)   
  tcrit: shortest time the patient can spend in the alarming region before going critical 
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Obtaining tcrit 

•  For our patient model, determine tcrit analytically 

•  In a more complex case, obtain through Matlab 
simulation 

•  For a more precise result, a modal value can be 
derived 
– E.g., account for patient context such as 

weight. 

min2

min1log1
CH
CHtcrit −

−
=
α
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UPPAAL Model 

PCA CG 

NW 

PO Sup 

Network Component 

Patient 
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Properties verified with UPPAAL 

X 
Safe 

Critical Alarming 

•  The patient can not go into the critical region 
   A[] (samplebuffer >= critical) 

•  The pump is stopped if patient enters alarming 
A[] ( samplebuffer < alarm_thresh ->  

 A<> (PCA.Rstopped V PCA.Bstopped) 

•   Once SpO2 drops below pain threshold, it 
eventually goes back up 

   A[] (samplebuffer < pain_thresh -> A <> 
samplebuffer >= pain_thresh) 

STOP 

Safe 
Critical Alarming 
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Effects of unreliable network 

•  Problem: 
– The pump may not receive stop commands.  

•  Solution: 
–  Instead of sending simple start and stop 

commands, send a command giving the pump 
permission to run for a certain period of time. 

•  Open-loop stability 
– We need to determine how long the pump can 

run without endangering the patient 
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System Implementation 

•  FPGA boards for the device interfaces and real-
time network 

•  Real devices  
where possible 

•  Homegrown 
pump prototype  
for control 
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Conclusions 

•  Medical CPS offer plenty of challenging problems 
that urgently need solutions 

•  Not all of these problems are technical 
– Some are organizational, cultural, etc. 

•  We presented first step 
– Case study of a real clinical problem 
– Modeling approach combines simulation and 

formal verification 
•  But much research is still needed 
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Future work 

•  Better patient model 
–  More realistic dynamics, parametric variability 
–  More sophisticated control-theoretic analysis 

•  Sensor fusion 
–  Better reliability 
–  Faster detection 

•  Safety in dynamically created scenarios 
–  Compositional reasoning? 
–  Safety case construction 

•  Modeling of clinical scenarios 
–  Workflows, requirements for devices, safety criteria 

Current and Future Research 
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•  Introduction 
•  Our vision 
•  Current state of affairs 
•  Our Approaches 

–  Model-based safe adaptive/robust control 
–  Simulation/testing based verification 

Outline 
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•  Diabetes: a growing problem 
–  26 million (8.3% of the population) in US have diabetes 
–  7-th leading cause of death 
–  Costs $174 billion annually 
–  5-10% are Type 1 (T1D), others are Type 2 (T2D) 

•  Improved blood glucose regulation benefits  
–  maintain glucose level within certain ranges 
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Introduction 
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Patient 
 
 
 Infusion pumps 

 
 
 

Glucose  
Meter 
 

Caregivers or 
patient 
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•  Introduction 
•  Our Vision 
•  Current state of affairs 
•  Our Approaches 

–  Model-based safe adaptive/robust control 
–  Simulation/testing based verification 

Outline 
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•  A networked glucose control system 
–  promote the quality of glucose regulation 
–  reduce caregivers’ workload, improve patient safety 

•  Only alert caregivers to adverse events 
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Our Vision 
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Controller 
 
 
 

Alert 
Patient 

 
 
 
 

Infusion pumps 
 
 
 

Glucose  
Meter 
 

Caregivers 
 
 
 

Network 

Network 
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•  Safe and effective networked glucose control system 
–  Hazards: communication and components may fail 
–  How to guarantee safety under failure conditions 
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Research Objective (1) 
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Controller 
 
 
 

Alert 
Patient 

 
 
 
 

Infusion pumps 
 
 
 

Glucose  
Meter 
 

Caregivers 
 
 
 

Network 

Network 

•  Model-based development 
–  Needs patient model and controller model 

•  Safety property: patient’s physiological states never become 
critical, e.g., hypoglycemia 
–  assuming all components work as assumed 
–  In present of hazardous situations and uncertainties in 

environment, e.g., component failures, delay food feedings 
•  Validation and verification 

 

Research Objective (2) 
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•  Introduction 
•  Our Vision 
•  Current state of affairs 
•  Our Approaches 

–  Model-based safe adaptive/robust control 
–  Simulation/testing based verification 

Outline 
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•  Modeling the human glucose-insulin dynamics 
–  60’s: simplest linear model by Bolie 
–  70’s – 80’s: minimal (coarse-grain) modeling strategy 
–  90’s – now: maximal (fine-grain) models 

•  High-order nonlinear model with many unknown parameters 
•  Not easily identifiable 
•  Man et al., 2007, meal simulation model 
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Patient Model 
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•  Controller: clinical guidelines 
–  5 ICU insulin infusion guidelines from a hospital 
–  programmed as rule-based controllers 
 

•  Patient model:UVa/Padova T1DM Metabolic Simulator* 
–  Based on a maximal model (Man et al., 2007) 
–  30 “virtual” subjects settings 
–  Full version (with 300 virtual subjects) approved by FDA in 2008 to 

substitute animal trials in the pre-clinical testing of certain control 
strategies 

 

•  Model-based evaluation of clinical guidelines 

29 

Guideline-based Controller (1) 

Guidelines controller 
 
 
 
 

Patient model 
 

 
 
 

*: © 2011, The Epsilon Group 

•  Guideline controls are not always effective 
•  Hypoglycemia (low glucose) and serious oscillations in glucose level 

observed on some virtual subjects 
–  Example:  
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Guideline-based Controller (2) 
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Some subjects are more resistant to insulin 
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Guideline-based Controller (3) 
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Insulin rate 

Some subjects are sensitive to insulin 
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Guideline-based Controller (4) 
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•  Clinical guidelines use fixed rule tables  
–  Not adaptive to inter-subject variability within the same 

patient population 
 

•  Need more effective controllers for the networked control 
system 
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Guideline-based Controller (5) 

•  Introduction 
•  Our Vision 
•  Current state of affairs 
•  Our Approaches 

–  Model-based safe adaptive/robust control 
–  Simulation/testing based verification 

Outline 

34 
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•  Deal with physiological parameter uncertainties 
–  Adaptive approach: 

•  Adjusting controller settings at run-time 
•  Explicit adaptive control: learn model parameters at run-time 

–  Difficult for a ~20-D non-linear model with ~30 parameters  
•  Implicit adaptive control may apply 

–  Robust approach: 
•  stabilize the plant with bounded parameter uncertainties 

•  Challenges: verification of adaptive/robust controller 
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Adaptive/Robust Control 

Plant 
(Patient) Controller 

Adjusting 
Controller 
Settings 

•  Adaptive control often involves learning the parameters by 
feeding in extreme inputs 
–  Example: aggressively turning a car 

•  Not safe for patient-in-the-loop systems 
•  Open issue: adaptive exploration with safety constraints 

Safe Adaptive Exploration 

36 
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•  Model complexity trade-off 
•  Reduction with bounded discrepancy 

Safe Non-linear Model Reduction 

Simple linear models Non-linear maximal models 

System identification 

Controller design 

Testing and verification 

Model accuracy 
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•  Introduction 
•  Our Vision 
•  Current state of affairs 
•  Our Approaches 

–  Model-based safe adaptive/robust control 
–  Simulation/testing based verification 

Outline 

38 
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Robust Verification for Linear Systems: Example 
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System:	
  

Step input (t > 0):	
  

Steady state at t = 0:	
  

Property:	
  

Φ = G π1 ˄ F [0,0.85]G π2  
O(π1) = [-1.5,1.5] 
O(π2) = [0.8,1.2] 

Τ 

Initial conditions:	
  

Uncertain parameters	
  
e.g. C∈[a1,a2] 

This is a transmission line system. A ~80 dimension linear system. The property we want to verify is that the output y(t) globally stays within Pi_1 
(-1.5,1.5), and y(t) enters Pi_2 (0.8,1.2) within [0,0.85] time interval. Such kind of properties are closely related to common control performance metrics 
like rise time, settling time, constraints on input/state, etc. This shows the properties we are interested in and how to interpret the properties 
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Problem Formulation 

Specification Φ 
Closed-loop system Σ 
 
 
xç = f (x ; p; u) X0 ⊆ X 
y = g(x ; p; u)

L(Σ) ⊆ L(Φ) 

Robust Tester  

Fainekos, Girard and Pappas, Temporal logic verification using simulation, FORMATS 2006 
Julius, Fainekos, Anand, Lee, Pappas, Robust Test Generation and Coverage for Hybrid Systems, HSCC 2007 
Fainekos, Pappas, MTL Robust Testing and Verification for LPV Systems, ACC 2009  

Given a closed-loop system model, and a set of specifications, we want a tester to tell whether the system satisfies the 
specifications, in the sense that the set of all possible system traces is a subset of all traces on which the specifications are true  



21 

41 

   L(Σ) ⊆ L(Φ,O) 

L(Σ’) ⊆ L(Φ,Oδ) ? 

Solution Overview 41 

Closed-loop system Σ 
 
 

δ-approximately 
bisimilar 

X0 ⊆ X 
p(t)∈P 

dx/dt = A(p(t)) x(t) 
y(t) = C x(t)  

Closed-loop system Σ’ 
 
 X’0 ⊆ X’ dx'/dt = A’ x’(t) 
y'(t) = C’ x’(t)  

δ-robustification 

Specifications 
Φ = G π1 ˄ F[0,Τ] G π2 
Observation map Oδ 

Specifications 
Φ = G π1 ˄ F[0,Τ] G π2 
Observation map O 

The key idea of our solution is: Given the original closed-loop system, where the matrix A depends on some time-varing uncertain 
parameters p(t), we first try to find a fixed linear system A’ that is a close approximation of the original system, in the sense that the 
output traces of the original system always (despite uncertain p(t)’s) stay within Delta distance to the traces of the reduced system. 
Then if we can show that the specifications are satisfied by the reduced system with some robustness constraints (explained in the 
next slide), then we can infer that the original system also satisfy the properties 
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MTL Robust Testing 42 

ε 
ε 

ε>0 

0<δ<ε 

2δ 
Repeat with new 
initial condition until 
X0 has been covered 

Specifications 
Φ = G π1 ˄ F[0,Τ] G π2 
Observation map O 

Fainekos, Girard and Pappas, Temporal logic verification using simulation, FORMATS 2006 

This slide illustrate intuitively how the approach works: Given a system trace of the reduced system and the specifications, we have a 
software tool (next slide) to calculate a robustness bound eps, meaning that the specification is locally satisfied anywhere within the 
eps-”tube” (the region between to blue lines) around the given trace. 
Next if we can show that the “difference” between the reduced system and the original system is always within the “tube”, then it is 
inferred that the original system traces also satisfy the specifications  
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Software toolbox : TaLiRo 
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Input:  
Specifications 

Monitor/Tester  

Output: 
ε ∈ R ∪{±∞} 

Input:  
Discrete time signal 

Available at : http://www.seas.upenn.edu/~fainekos/robustness.html 

We have a software tool such that given a system trace and specifications, the tool calculate the 
robustness bound epsilon, meaning that the specifications are satisfied within a epsilon-tube 
around the given trace 
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Example : Nonlinear systems 
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Here is an example of extending the approach to simple non-linear systems: In the model, the only non-linear term is sin2(x2), rather than dealing with 
the non-linear system, we transform the system into a linear system with uncertain parameters, by replacing sin2(x2) with a parameter P, which is 
unknown but bounded (within [0,1]). Next, if we can show that all possible traces of the linear system (with uncertain P) satisfy the specifications, we 
know the original system also satisfy the same specifications.  
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•  Possible to extend the robust verification results on linear 
systems to large non-linear systems 
–  Partition parameter space into several regions 

•  Example: highly insulin-sensitive, average, and insulin-resistant 
subjects 

 
 

–  Robustness verification within each region 
–  Adaptive exploration to determine which region a newly 

admitted subject belongs to 
•  Exploration phase must satisfy safety properties 
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Adaptive/Robust Extension 

Insulin Sensitivity Coefficient: within [3,10] 
Insulin resistant Average Insulin sensitive 
[3,5] [5,8] [8,10] 

•  Identify platform hazards in the networked control setting  
–  Develop mitigation strategies 

•  Unlike the closed-loop PCA system, where only overdosing is 
undesirable, in the BG system, both hypo- and hyper-glycaemia 
need to be avoided 

•  No trivial fail-safe mode for closed-loop BG control 

–  System-level safety verification and validation to show that 
patient safety is guaranteed in the networked system, even 
under failure conditions 
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Safety Analysis 


