
Andrew King, Vincent Wang, Oleg Sokolsky, Insup Lee
PRECISE Center, University of Pennsylvania

The Problem

 The notion of Cyber Physical Systems (CPS) recognizes that new and
complex systems, which closely couple (digital) discrete, physical (continuous),
and social elements have the potential to benefit many aspects of society.
Many of these CPS, by their very nature will be integrated into the social unit
which they serve and should be malleable according to the needs of that social
unit. Additionally, many of these CPS will be safety critical; if the system
behaves incorrectly humans may be injured or killed. Medical Device Plug and
Play (MD PnP), described below, is an example of such a dynamic CPS that
will be reconfigured and extended at runtime by the users.

MIDdleware Assurance Substrate (MIDAS)

TitleMotivation

Medical Device Plug and Play (MD PnP)

 MD PnP envisions a future where commodity medical devices are
implemented with support for a widely accepted interoperability standard.
These medical devices would expose a logical interface which would allow
applications to access the sensor data these devices are collecting (e.g. blood
pressure, respiratory rate) as well as reconfigure any actuators present in the
device (e.g. the infusion rate of an infusion pump, stroke of a ventilator, etc.)
The MD PnP platform would then let clinicians launch applications for specific
clinical scenarios (e.g. multi-device closed loop control, smart alarms, etc.) if
application compatible devices are connected, essentially creating a new,
complex, medical device which we call a Virtual Medical Device (VMD). Unlike
normal medical devices, the systems integration stage of the device’s
lifecycle is performed by the hospital (point of care). How can we ensure
that the newly created VMD is safe?

(c) 2012 Andrew King, the PRECISE Center, and others

Computational Platform Services / Architecture App Verification and Validation

Our Approach

Application PCAInterlockSys{
begin required devices

po : PulseOximeter{
pub spo2 : SpO2 periodic @ 2Hz;
pub hr : HeartRate periodic @ 2Hz;

}
pca : PCAPump{

cmd ticket : Integer, MIT = 10Hz;
<Behavior FSM>

}
end required devices
begin application logic

begin module PCAInterlock
pub channel ticket : Integer
sub channel spo2 : SpO2
begin task computeTicket(spo2 : SpO2)

...
end task

end module PCAInterlock
end application logic
begin dataflow

po.spo2 -> PCAInterlock, max_delay = 15ms
PCAInterlock.ticket -> pca.ticket, max_delay = 30ms

end dataflow
begin task scheduling

PCAInterlock.computeTicket, sporadic P = 0.5s, D=0.5s
end task scheduling

}

Required Devices:
The Programmer specifies which types devices are
necessary for the app to correctly function. This spec
defines what data the device produces, the types of
commands it responds to and how it responds to those
commands

Behavior:
The devices are not simple and may have complex
autonomous behavior. The developer can use a finite
state machine to define required device behavior

App Design & Development

Distributed Real-Time Message Service

Registration
Service

Global Resource
Manager

Runtime
Monitoring

Service

Application Manager
App

Database

UI Service

UI Service:
Manages the graphical
elements of a running
app and presents those
elements to the user.

App Database:
Stores app
specifications and
implementations.

Application Manager:
Provides a real-time
execution environment
(VM) for MIDAS apps
and ensures
compatibility between
apps and devices.

Runtime Monitoring
Service:
Monitors app and device
messages flowing over
the message service to
detect & report faults.

Resource
Manager:
Performs feasibility
tests of app
requirements,
handles resource
allocation
(CPU, RAM,
Network)
to guarantee
running apps’s
requirements are
always met.

Real-Time Messaging
Service:
Provides an abstract
interface for publish /
subscribe and transactional
messaging with support for
hard real-time delivery
guarantees. Device 1 Device 2 Device N...

Devices:
Devices connect to MIDAS via the messaging service and
register their capabilities with the Registration service.

MIDAS consists of a collection of
services. These services work
together to provide a
computational platform for safety
critical, runtime-composed CPS

MIDAS Apps consist of both
application code and requirements
on performance and device
capabilities. The platform uses this
information to perform admission
control and guarantee the app’s
requirements will be met.

App Logic:
App logic is implemented using
a subset of Java and an abstraction layer
used to interact with devices.

Data-flows and Task QoS:
Bounds on message delays and task
scheduling parameters (and deadlines)
are specified

PCA Interlock Example: First the app is
designed and implemented in the MIDAS
development environment. The app
specifies what algorithms will be executed
as well as what device capabilities are
requires and constraints on the inter-
component transmission of messages.

Extract Model: Since the app
specification contains both the algorithms
used as well as the timing constraints, a
model (e.g. UPPAAL or Simulink/
Stateflow) can be extracted from the spec
(automatically).

A⇤ (SpO2 < 93 ! PCAPump = off)

Verification:
Since the model
conforms to the
execution constraints
guaranteed by the
platform (by
construction) the
engineer has
confidence in the
relevence of the
verification result

Validation:
The engineer can
quickly simulate the
app using complex
plant models in
order to quickly
determine if their
implementation is
reasonable

User’s Workflow

1) Choose Devices
First the user determines what devices they
would like to bind with their app of choice.
The user plugs in the necessary devices to
the network.

2) Device Registration
The devices register their capabilities with
MIDAS’s registration service. The registration
service actively tracks the network
connectivity of the device.

3) User binds devices and initiates app
The user uses the MIDAS UI to select which
specific registered devices to bind to a new
app instance.

4) App Manager asks Resource Manager
for app resources
The resource manager performs a feasibility
check to determine if the platform can
guarantee the QoS requirements of the app at
the time. If not, app initialization is halted.

5) App Manager performs a device
compatibility check
The selected device capabilities are checked
against the apps device requirements. If the
any device is incompatible then app
initialization is halted and the user is
informed.

6) App Manager initiates App
The app manager loads app logic into
memory, uses the resource manager to lock
the necessary resources, and then schedules
and releases the app tasks.

 A CPS designed in an ad-hoc fashion (e.g. current health IT systems and the
national power grid) will suffer from both complexity and “design-rot.” This
complexity and design-rot will make it difficult or impossible to perform relevant
verification and validation or ensure that the system operates as intended. A
computational platform that 1) mediates the interaction between the different
sub-systems of the CPS, 2) provides a form of global resource management for
QoS control, 3) provides a automatic compatibility check which will ensure that
only components with the correct capability are composed into the CPS and 4)
provides useful abstractions for design and programming will help manage this
complexity and provide a way for engineers and tools to extract checkable
models of the CPS.

Relation to MDCF

 The Medical Device Coordination Framework (MDCF) is a joint project
between the University of Pennsylvania and Kansas State University to
implement software infrastructure for medical device plug and play. MIDAS is
an extension of the MDCF to support a more general notion of runtime
composable CPS. MIDAS removes medical device specific elements of the
MDCF (in order to generalize the concepts) but adds support for real time
communications and tasks, a CPS-oriented notion of component compatibility
checks, and a runtime monitoring system that enables runtime verification (RV)
of executing applications. Eventually, some technologies prototyped with
MIDAS (global resource management, real-time support and RV) will get back
ported into the MDCF infrastructure as the broader MDCF development team
sees fit.

