

Introduction

- Diabetes: a growing problem
 - 26 million (8.3% of the population) in US have diabetes
 - 7-th leading cause of death
 - Costs \$174 billion annually
 - Complications: heart attacks, strokes, high blood pressure, kidney failure, blindness
- Two types:
 - Type 1 (T1D, 5-10%): loss of the insulin-producing beta cells in the pancreas, leading to insulin deficiency
 - Type 2 (T2D): insulin resistance which may be combined with relatively reduced insulin secretion
- Improved blood glucose regulation benefits
- maintain glucose level within certain ranges
- **Traditional Workflow:**

Background

Patient Model

- Modeling the human glucoseinsulin dynamics
 - 60's: simplest linear model by Bolie
 - 70's 80's: minimal (coarsegrain) modeling strategy - 90's - now: maximal (fine-
 - grain) models • High-order nonlinear
 - model with many unknown parameters
 - Not easily identifiable

Glucose Controller

- Clinical guidelines - Fixed rule tables
 - Unlike classical controllers
 - Developed at individual departments
 - Implemented by nurses
- Automatic glucose controllers - 70's: proportional-derivative (PI) control
 - Clemens, 1979
 - 80's: classical pole-placement approach, adaptive control • Fischer et al., 1987
 - 90's: optimal control • Parrish and Ridgely, 1997
- Late 90's now: model
- predictive control (MPC)
- Parker et al., 1999, Hovorka et al., 2004, Magni et al., 2007

UNIVERSITY OF PENNSYLVANIA Closed-loop Medical Cyber-Physical Systems: **Networked Glucose Control System**

Sanjian Chen¹ George J. Pappas² Soojin Park³ Benjamin A. Kohl³ Margaret Mullen-Fortino³ Oleg Sokolsky¹ Andrew King¹ Insup Lee¹ (PI) ²Department of Electrical & Systems Engineering ³University of Pennsylvania Health System (UPHS) Philadelphia, PA **University of Pennsylvania, Philadelphia, PA** {kohlbe, Soojin.Park, Margaret.Fortino-Mullen}@uphs.upenn.edu pappasg@seas.upenn.edu

In Silico Guideline Evaluation

Simulation-based Evaluation

- **Controller: clinical guidelines**
- 5 ICU insulin infusion guidelines from a hospital
- programmed as rule-based controllers
- Patient model: UVa/Padova T1DM Metabolic Simulator © 2011, The Epsilon Group
 - Based on a maximal model (Man et al., 2007)
- 30 "virtual" subjects settings
- Model-based evaluation of clinical guidelines
- Individual insulin sensitivity varies: **Insulin Resistant** Insulin Sensitive

Key Observations

- Guideline controls are not always effective Hypoglycemia (low glucose) and serious oscillations in glucose level observed on some virtual subjects

- Clinical guidelines use fixed rule tables Not adaptive to inter-subject variability within the same patient population
- Need more effective controllers for the networked control system

Approach

Model-based safe adaptive/robust control

- Manage physiological parameter uncertainties
- Adaptive approach:
 - Adjusting controller settings at run-time
 - Explicit adaptive control: learn model parameters at run-time – Difficult for a ~20-D non-linear model with ~30 parameters
 - Implicit adaptive control may apply

- Robust approach:
 - stabilize the plant with bounded parameter uncertainties

u(*t*)

Challenges: verification of adaptive/robust controller

Safe Adaptive Exploration

- Adaptive control often involves learning the parameters by feeding in extreme inputs
- Example: aggressively turning a car
- Not safe for patient-in-the-loop systems

Safe Non-linear Model Reduction

- Model complexity trade-off
- Reduction with bounded discrepancy

Safety Analysis

- Identify platform hazards in the networked control setting Develop mitigation strategies
 - Unlike the closed-loop PCA system, where only overdosing is undesirable, in the BG system, both hypo- and hyper- glycaemia must be avoided
 - No trivial fail-safe mode for closed-loop BG control
- Perform system-level safety verification and validation