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The system 1s a configurable pipeline of sensing, processing, and output elements. Each configuration can be instantiated on the GSA platform and
executed with physical devices, virtual patients, or prerecorded patient data.

Interoperability:
* To reduce false alarms, we should use multiple vital
signs, from multiple devices.

In modern hospitals, vital signs are continuously
monitored with a variety of medical devices.

Source

Many devices are configured
with threshold alarms, which
are considerably limited:

Studies have shown
up to

75%

of alarms are false

Configurable
Pipeline

e Current devices are rarely interoperable.
 Differing data formats
 Differing data rates

Transform

Transform

e Monitors only raise alarms Intelligence:

Pre-

15 are when the threshold is processing s e Biological complexity makes
posttives. crossed 2 building patient models
e Monitors are oblivious to “06 difficult. Models would aid in
each other ;Zz predicting the patient's future
=

Statistical state.

Models

e Monitors typically don't use
patient information to
customize alarms

e Monitors do not provide

detailed rational for alarms
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False positive (1- specificity)
ROC Curve: It 1s
feasible to compare
the performance of
multiple models to

choose the one with

the best performance.

S7%

of false alarms generated
by test data were
suppressed using GSA.

* We can approximate models
utilizing statistical techniques.

e There are many different
techniques. Choosing the right
one 1s difficult.

*As a result monitors produce many false alarms,
which have been shown to have an adverse affect on
patient care.

PCA Closed Loop Control Setup Interpretation of Data:

* Some data sources are difficult to interpret
automatically (e.g. EEG).

External Data
Stores
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e Application of time series analysis or similar will
likely be required.

CABG Smart Alarm

ePatients who undergo coronary artery
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state; identifies combinations of vital actionable decision
signs which would be cause for concern 5 message (o a
(based on interviews of medical experts). ' | medical device.

*Deploy systems on top of a separately validated
middleware platform.
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* Leverage the
middleware's safety

e properties to prove the
safety properties of the
system.

 Validation can focus on
checking:

*Combining vital signs in this way
produced a 57.13% reduction 1n the
number of false alarms generated
without suppressing any true alarms..

Heart with
coronary artery
bypass graft.’
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Model check individual

Closed Loop Control

*Patient Controlled Analgesia pumps increase patient
comfort, but are High *

PLULMEMBOLLUS

e Individual components
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*The PCA pump can be vital signs into discrete classes useful transformation or answer a modeled in the esigner; system '

e Clinical decision support for vasospasm detection
in subarachnoid hemmorage patients

e Closed loop insulin control using a diabetic
patient model

Multi-vital closed loop PCA disabled for the duration models can be exported and instantiated.

pump control of the distress state.

(established through medical expert question. Here, four vital signs are
interviews). transformed 1nto an alarm level.

1: Clark, et al. Impact of clinical alarms on patient safety. ACCE Healthcare Technology Foundation: reports 99%; Kestin, et al. Auditory alarms during anaesthesia monitoring. Anaesthesiology1988.: reports 75%; Phillips, et al. Clinical alarms: improving efficiency and effectiveness. Crit Care Nursing Q: reports 86% 2: M. Mullen-Fortino and N. O’Brien. Caring for a patient after coronary artery bypass graft surgery. Nursing, 38(3):46-52, March 2008. 3: Song, et al. Comparison of Machine Learning Techniques with Classical Statistical Models in Predicting Health Outcomes. 2004
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