

Problem

•In modern hospitals, vital signs are continuously monitored with a variety of medical devices.

Studies have shown up to

of alarms are false positives.¹

of false alarms generated by test data were suppressed using GSA.

•Many devices are configured with threshold alarms, which are considerably limited:

- Monitors only raise alarms when the threshold is crossed
- Monitors are oblivious to each other
- Monitors typically don't use patient information to customize alarms
- Monitors do not provide detailed rational for alarms

•As a result monitors produce many false alarms, which have been shown to have an adverse affect on patient care.

Applications

CABG Smart Alarm

•Patients who undergo coronary artery bypass graft (CABG) surgery are high risk post-surgery, in the ICU.²

•To mitigate the failures associated with threshold alarms, we implemented a rule-based system which monitors multiple vital signs to distinguish data artifacts from true patient distress.

•Combining vital signs in this way produced a 57.13% reduction in the number of false alarms generated without suppressing any true alarms..

Closed Loop Control

Heart with coronary artery bypass graft.²

comfort, but are associated with a large number of adverse effects.²

•Using multiple vital signs, respiratory depression can be detected.

•The PCA pump can be disabled for the duration of the distress state.

Andrew King, Alex Roederer, Sanjian Chen, Philip Asare, Oleg Sokolsky, Insup Lee

PRECISE Laboratory, Department of Computer and Information Science, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA

Flexible Architecture

The system is a configurable pipeline of sensing, processing, and output elements. executed with physical devices, virtual patients, or prerecorded patient data.

patient model

