Verified Generation of Glue Code for ROS-based
Control Systems*

Wenrui Meng, Junkil Park, Oleg Sokolsky, Stephanie Weirich, and Insup Lee

University of Pennsylvania

Abstract. The paper considers the problem of automatic generation of
platform-specific glue code for platform-independent controller code. We
present a code generator, ROSGen that generates the glue code based
on a declarative specification of platform interfaces. Our implementa-
tion targets the popular Robot Operating System (ROS) platform. We
demonstrate the code generation process is amenable to formal verifi-
cation. The code generator is implemented in Coq and relies on the
infrastructure provided the CompCert and VST tool. We prove that the
generated code always correctly connects the controller function to sen-
sors and actuators in the robot. We use ROSGen to implement a cruise
control system on the LandShark robot.

1 Introduction

Modern cyber-physical systems are typically constructed from separately devel-
oped components. A system architectural model of the system is used to describe
the necessary components and relationships between them. Once individual com-
ponents are developed, they are deployed on a middleware platform that can be
configured to implement connections between the components according to the
architecture.

We envision a model-based approach that targets both component develop-
ment as well as deployment. Model-based development is a promising approach
for developing safety critical systems, in particular autonomous robotic systems.
It has the potential to detect and avoid design errors during the early phases of
system development. In developing components, component behaviors are ab-
stractly specified by data models, state charts, or diagrams. These diagrams can
be expressed using design tools such as Simulink/Stateflow [1], UPPAAL [2],
or SCADE/Lustre [3]. Code generation tools then convert these diagrams into
code, typically platform-independent C source code. Such generative approach
helps us to preserve properties verified at the modeling level, making sure that
component implementation also satisfies these properties.

The second phase of the model-based development approach is to deploy the
generated platform-independent code of each component on the chosen platform.

*This research is supported in part by DARPA HACMS program under agreement
FA8750-12-2-0247. The views expressed are those of the authors and may not reflect
the official policy or position of the Department of Defense or the U.S. Government.

An architectural model of the system specifies the desired platform configuration.
The architectural model specifies (1) how each component should be executed
(for example, periodic execution with a given period may be specified), (2) how
system inputs, such as sensor streams, should be routed to inputs of compo-
nents processing the streams, and (3) how outputs of each component should be
routed to inputs of other components or to system outputs (such as actuators
and operator displays). A faulty deployment undermines the benefits of prov-
ably correct implementation of individual components. Platform configurations,
therefore, should be automatically generated from the architectural model to
ensure correct integration of individual components.

A significant part of platform configuration is providing a platform-specific
wrapper for the platform-independent component implementation. The wrapper
(also known as glue code) uses platform APIs to schedule component execution
and to obtain inputs for the component and forward its outputs.

In this paper, we address the problem of automatically generating provably
correct glue code for a particular deployment platform from a given architectural
model. We use the Robot Operating System (ROS) ! as our target platform, a
“thin, message-based, peer-to-peer” [4] robotics middleware designed for mobile
manipulators. The ROS platform has recently gained popularity in the robotics
community, because it raises the level of abstraction in embedded control system
development. ROS-based applications are assembled from multiple ROS nodes
that run concurrently. ROS supports communication between these nodes using
a publish/subscribe-based message system.

To that end, we develop ROS glue code Generator (ROSGen), a tool that
automatically generates such glue code from system architecture specifications.
The input language for our code generator is a domain-specific language, called
a ROS node model, that specifies the ROS nodes that comprise the system and
ROS topics that the nodes subscribe to and publish on.

Of course, by generating code we eliminate some sources of programmer error
in system development. However, for safety critical systems, we want the highest
level of assurance. We would like to prove that output of our code generator sat-
isfies strong correctness and safety requirements. One can take two approaches
for the verification of generated code; first, one may verify every output indi-
vidually. Alternatively, which is generally much harder, one may verify the code
generator itself.

Our code generator is designed to support formal verification. ROSGen is
implemented using the Coq proof assistant [5], making the full higher-order
logic of Coq available for reasoning about both the output of the generator
(represented as a Coq data structure) and the code generator itself (represented
as a Coq function). In this context, we have used both approaches to verification.

We have applied ROSGen as part of a case study of glue code generation
for the Black-i Robotics LandShark platform. The LandShark is an unmanned
ground vehicle typically used to extend human capabilities, often in dangerous
environments such as at a chemical spill or for sentry duty. ROSGen can generate

1 WWW.T0S.0rg

glue code for this platform, and we have proven that the generated code satisfies
a crucial Data Delivery Correctness (DDC) property: that the arriving sensor
message will be correctly delivered to the control function and that the output of
the control function will be correctly delivered to the actuators. We express and
prove this property using the Verified Software Toolchain (VST) tool [6], which
provides a higher-order separation logic for reasoning about memory usage in C
programs. Our proof has been mechanically checked by Coq.

Moreover, we were able to prove the correctness of the code generator itself.
That is, we can show that every output of ROSGen satisfies the same DDC
property that we have shown for the LandShark instance. In general, this is a
very hard problem. However, in our case, because of the relatively simple code
structure and the property of interest that is concerned with data transfer, we
were able to generalize the proof of instances of the generated code to the proof
of the generator itself.

In summary, this paper makes the following contributions:

— We introduce a domain specific language for describing the ROS nodes. We
develop a code generator ROSGen to generate the robotics glue code accord-
ing to a given ROS node model (Section 4).

— We demonstrate an application of ROSGen to a case study of a robotic
control system and prove, using a suite of Cog-based tools, that the glue code
correctly delivers data according to the ROS node model of the controller
(Section 5).

— Finally, we verify that, given a well-formed ROS node model, ROSGen al-
ways generates code that satisfies the data delivery correctness property
(Section 6).

The rest of the paper is organized as follows. We introduce the relevant work
that our code generation is dependent on in Section 2. Section 3 explains the
architecture of the ROS based control system and introduces the LandShark
case study. In Sections 4, 5 and 6, we explain our code generation approach for
ROS based control system and the verification for the generated code and code
generator itself. We discuss related work in Section 7 and conclude in Section 8.

The Coq implementation of the code generator can be downloaded from
http://rtg.cis.upenn.edu/HACMS/codegen.html. The relevant parts of the
case study, including the ROS node model and complete generated code, can
also be found on the same web page.

2 Proof Environment

Figure 1 shows the tools underlying ROSGen, which are briefly described below.

ROSGEN

\
CompCert VST

Fig. 1. ROSGen dependency structure

2.1 Coq

Coq? is a formal proof management system. It provides a formal language to
write mathematical definitions, executable algorithms and theorems together
with an environment for semi-interactive development of machine-checked proofs.

2.2 CompCert

CompCert [7] is a formally verified optimizing compiler for the C programming
language that currently targets PowerPC, ARM and 32-bit x86 architectures.
The compiler is specified, implemented and proved correct using the Coq proof
assistant. It targets embedded systems programming, with stringent reliability
requirements. CompCert’s source language, a large subset of C called Clight,
is the target language of our code generator; our generator produces abstract
syntax values for Clight.

The formal semantics of Clight is mechanized using Coq. It supports types
including integral types (integers and floats in various sizes and signedness), ar-
ray types, pointer types (including pointers to functions), function types, as well
as struct and union types. A Clight program is composed of a list of declarations
for global variables (name and type), a list of functions and an identifier naming
the entry point of the program (the main function in C).

2.3 Verified software toolchain

The goal of the Verified Software Toolchain (VST?) project is to verify that
the assertions claimed at the top of a software toolchain really hold in the ma-
chine language program, running in the operating system context, on a weakly-
consistent-shared-memory machine. It defines Verifiable C, a higher-order con-
current separation logic for Clight. Verifiable C has been proven sound with
respect to the operational semantics of CompCert C [6].

The Verifiable C program logic extends Hoare logic by including separa-
tion logic constructs to support reasoning about mutable data structures such
as arrays and pointers. In separation logic, an assertion holds on a particular
subheap and assertions on different subheap are independent. As a result logical

Zhttp://coq.inria.fr/
Shttp://vst.cs.princeton.edu/

reasoning is modular. VST provides a tactic system for proving correctness prop-
erties, specified by the VST assertions, of C light programs. The most significant
of these are the forward tactic, which symbolically executes the code, and the
entailer tactic, which simplifies and often solves VST assertions [3].

3 ROS-based control system

3.1 Robot operating system

ROS is a widely used middleware for robotic system applications. ROS is component-
based. A software component in ROS is called a ROS node. A ROS application
usually consists of multiple ROS nodes running concurrently. The ROS nodes
asynchronously communicate with each other. Communication in ROS is based

on the Publish/Subscribe paradigm and uses structured message types. ROS Ser-
vices are the mechanism to implement remote procedure calls in ROS, which are
synchronous and blocking. ROS also provides services for synchronous, blocking
communication, which are not considered in this paper.

void callback(MessageType msg) { ... };
main(){
Subscribe(..., callback);

Advertise(...);
while(ros_ok()){
SpinOnce();
/* Process the input to the controller */
Controller_step();
/% Process the output of the controller */
Publish(...); }}

Fig. 2. ROS-based controller system skeleton

Figure 2 shows the skeleton of a ROS-based control system. In order to
subscribe to a topic in ROS, users need to define a callback function. A callback
function for a topic is a message handler that is invoked to process the new
messages when they arrive. Subscribe is a function from the ROS API that
registers subscription information: a topic name, the message type, the internal
buffer size and the callback function for those messages. If a new message is
received, it is stored in an internal buffer. It replaces the oldest message in the
buffer if the buffer is already full. When the ROS API function SpinOnce is
invoked, all registered callback functions are invoked for every message in the
internal buffers. In order to publish a topic in ROS, users should use ROS API
Advertise first to create a publisher with topic name, message type, and internal
buffer size. ROS API Publish is used to publish a message.

ROS C Wrapper. ROS APIs described above are available as a C+-+ library.
However, our proof environment currently supports only C language. We built
a minimal wrapper that allow us to access APIs as C functions, and also allows
access to ROS message types as C data structures.

3.2 Case study of LandShark control system

In this section we illustrate a typical ROS-based control system using the Land-
Shark robot. The LandShark is an electric unmanned ground vehicle, shown
in Figure 3, manufactured by Black-I Robotics.* Our case study develops a
constant-speed cruise control algorithm that is resilient to attacks on vehicle
sensors. The LandShark uses three sensors, GPS, a left wheel encoder and a
right wheel encoder, to estimate its current velocity. These sensors can be com-
promised by attacks, such as GPS spoofing, that cause confusion in estimating
the current velocity of the vehicle. The attack-resilient cruise controller of Land-
Shark uses multiple independent sensors and the knowledge of the system model
in order to correctly estimate the current velocity of the vehicle and drive the
vehicle with a given constant velocity [9].

Fig. 3. LandShark robot

Figure 4 shows the architecture of the LandShark control system, which con-
sists of sensor/actuation/controller nodes and connection between them through
topic-based pub/sub communication. The ROS nodes landshark_gps and land-
shark_base are associated with sensors that read GPS and wheel encoder values
respectively and publish them. The ROS node landshark_wheel_velocity sub-
scribes the series of wheel encoder values and publishes the velocity of vehicle
calculated from them. The ROS node landshark_base also plays a role as an
actuation node in that it subscribes the actuation commands and actuates the
vehicle according to them. The ROS node landshark_controller is the controller

4http://www.blackirobotics.com/

= DY
landshark_

ROS Wrapper landshark_controller|

' \
landshark_ SENSOR CALLBACKS
wheel_
Rslecity Vieft_encoder
N Vight_encoder __|

/landshark/
wheel_

encoder Y

gps
v,

right_encoder

RESILIENT STATE
ESTIMATOR

|
I
T
N

Vieft_encoder
et gncoder 4

~ R cmd.twist.linear.x
(hY

=u(t)
landshark_
base

Fig. 4. LandShark control system architecture

,?

\§

\--g--------—'

node for landshark that subscribes sensor value messages and publishes actuation
commands. The landshark_controller node is periodically invoked at the rate of
50 Hz to execute the Simulink-generated step function. In each invocation, the
callback functions are invoked by SpinOnce to process the messages received.
The callback functions store the sensor messages in global variables. The sensor
values in the global variables are transferred to the input data structure of the
control algorithm function that is generated by Simulink. The step function is
executed to calculate the actuation command, which is encapsulated in a ROS
message variable and published by the publisher.

4 Code Generation

modelin code retty printin
s generation pretty p s
System ROS C C ROS C
ompCert
el ROSLab r:g:zl ROSGen]—P hk Aok }—P s
Templates theorem
(AST fragments)

proving
Coq/VST

Property
Specification

Fig. 5. Verified code generation toolchain

Our toolchain for verified code generation appears in Figure 5. The ROSLab
tool supports the design of system architectures. The diagram block in ROSLab
can be exported as a ROS node model. With the ROS node model, ROSGen
produces an abstract syntax tree for a subset of C called Clight, by instantiating
a Clight AST template. In addition, ROSGen also generates a VST specification
for each function, describing its DDC properties. We can prove that the generated
code satisfies these specifications, as we demonstrate in Section 6. The final C
code, which is run on the LandShark, is produced by the CompCert compiler
using its pretty printer.

4.1 ROSLab tool

ROSLab Development Environment Prototype
File

-3 PDE Workspace ’

o] Types
¢- [configurations
¢ =3 landshark
o (= component
&3 connection| /|
[event hand

Fig. 6. LandShark system diagram in ROSLab

ROSLab is a modular programming environment for robotic applications
based on ROS. Figure 6 shows a screenshot of ROSLab. ROSLab enables users to
model an architecture of an ROS application that consists of a set of ROS nodes
and the connection based on pub/sub between them. The interfaces of some
commonly used ROS nodes such as sensor and actuator nodes are pre-defined
in ROSLab. Users can define a new ROS node and its interface by selecting the
pub/sub channels to add to the interface of the node. ROSLab automatically
generates the glue C code of a ROS node and the glue code to interface with a
Simulink generated code.

4.2 ROS node model

A diagram block in ROSLab can be exported as ROS node model. A ROS node
model includes the period at which the node is to be invoked; the list of topics
that the node publishes or subscribe to; the name and the I/O interface of the
controller function that the node will run; finally, a mapping from subscribed
and published topics to inputs and outputs of the controller function.

The ROS node model for the landshark_controller ROS node in Figure 4
is shown in Table 1. The name of the node, the period of the controller, and the

Node Information

period node name controller name
20 landshark_controller Controller
ROS Topics
type topic name message package | message type |buffer size
S /landshark /left_wheel_velocity |geometry_msgs |TwistStamped 1
S /landshark /right_wheel_velocity |geometry_msgs |TwistStamped 1
S /landshark /gps_velocity geometry_msgs |TwistStamped 1
P /landshark_control/base_velocity |geometry _msgs | TwistStamped 1

Controller Interface

I/0 name record type
I Controller_U (Inl, double), (In2, double), (In3, double)
O Controller_-Y (Outl, double)

Interface Relation
type topic controller
SI /landshark /left_wheel_velocity, twist, linear, x Controller_U, Inl
SI /landshark /right_wheel_velocity, twist, linear, x Controller_U, In2
SI /landshark /gps_velocity, twist, linear, x Controller_U, In3
PO /landshark_control/base_velocity, twist, linear, x Controller_Y, Outl

Table 1. ROS node model for LandShark

name of the controller function that the node will execute are shown at the top
of the table. Published topics are indicated by the letter P and subscribed topics
are indicated by the letter S. For each topic, the unique topic name and the
type of messages are given. Next, the ROS node model specifies the controller
function interface. The function, in our case study, is generated from the Simulink
model of the controller, and names and types of input and output variables are
following the Simulink code generator conventions. Finally, the interface relation
represents the mapping from relevant fields of subscribed sensor messages to the
fields in the input data structures of the controller function, and similarly for
outputs of the controller function to published actuator messages.

4.3 ROSGen

4.3.1 Symbol table As the first step in code generation, ROSGen constructs
a Coq data structure representing symbols to be used in the generated code. The
names are obtained by parsing the ROS node model. Types for the controller
function interface are given in the node model. Types for ROS messages reference
in the node model are obtained by parsing the corresponding C header files.

4.3.2 Code templates Code generation proceeds by instantiating templates
that are Clight AST fragments. We introduced a top-level template, representing
the whole program, and a set of local templates. The top-level template is shown
in Figure 7. The program contains a list of global definitions and the name for
main function. A global definition can be either a variable definition or a function

definition. One of the global definitions is the definition of the main function,
which is partially constructed in the top-level template. Light-colored triangles
in the top-level template represent holes that are filled with instantiations of
local templates. Local templates are used to capture global definitions, such as
callback function definitions, global variables used to transfer data from callback
functions to the main function, and also glue code functions explained in more
detail below. Holes in local templates can represent statements, as well as variable
ids and types that are filled with references to the symbol table. Once all the
templates are instantiated, the final C code is produced by CompCert pretty
printing.

Fig. 7. Top-level Template

To make proofs more efficient, we modularize the body of the main function
from Figure 2 into several functions. The while loop is encapsulated as loop
function. Within the loop function, we wrap the code for transferring data from
global variable to controller input and controller output to publish input as
input_glue and output_glue function, respectively. Figure 8 shows the generated
code for the glue functions.

5 Code Proof

We use the VST to make proof for DDC property of the generated Clight AST.
Since VST is based on the programming axiom semantic, we specify the DDC
property by storing the original value and checking the relation of the destination
value and original value.

5.1 Data delivery correctness property of glue code

The main purpose of the ROS glue code is linking the sensor input, controller
function and actuator, so the critical property of glue code should capture the

void input_glue(){
double temp;
temp = landshark_left_encoder_velocity_msg.twist.linear.x;
Controller_U.Inl = temp;
temp = landshark_right_encoder_velocity_msg.twist.linear.x;
Controller_U.In2 = temp;
temp = landshark_gps_velocity_msg.twist.linear.x;
Controller_U.In3 = temp;
return;
}
void output_glue(TwistStamped *command){
double temp;
temp = Controller_Y.Outl;
command->twist.linear.x = temp;
return;

}

Fig. 8. Input and output glue functions

Input Simulink
parameter of Generated
controller Control

function Function

SLUEIE A ctuator
message

to be
published

senso Sensor
message
received

Deliver

Deliver Deliver Output
return

value

Global
variable

Fig. 9. Data delivery correctness property for ROS-based control system

correctness of the linking. In ROS glue code, the linking correctness means that
the sensor message is delivered into controller function input correctly. In addi-
tion, the output of the controller function correctly is delivered into the actuator
input. We specify the linking correctness property of the ROS glue code as a DDC
Property. This property indicates that the information from the origin should
be consistent with the system specification when it arrives at the destination.
For example, we design the system in the way that the sensor message is di-
rectly stored into global variables. So the DDC property of this operation is that
the original value of the sensor message is equal to the value of the updated
global variable. We can also do some arithmetical transformation on the original
value, then the DDC property should specify the relation of the original value and
destination value according to the arithmetical operation.

5.2 Generating function specifications

ROSGen automatically generates VST function specifications according to ROS
node model for both generated functions and ROS API functions. In VST, users
specify properties through function specifications, so we wrap our glue code
as functions. This glue code includes callback functions, as well as input and

output glue functions for the controller step. In addition, modularizing the code
as separate functions is also helpful for VST proof efficiency, since it reduces the
number of memory predicates involved in the proof. So we also wrap the while
loop statements in the main function as a separate loop function.

As shown in Figure 9, the specifications of the callback functions, input and
output glue functions capture the DDC property of the generated AST instance.
The callback functions are responsible for transferring sensor messages to global
message variables; the input glue function is responsible for transferring global
message variable to the input parameter of controller function; and the output
glue function is responsible for transferring output of controller function to the
parameters of publish function. For each part, the DDC property specification
defines the precondition that the original value is stored in the memory and the
post condition that the destination contains the desired value according to the
original value. For example, Figure 10 defines the specification of the callback

Definition landshark_left_encoder_velocity_callback_spec :=
DECLARE _landshark_left_encoder_velocity_callback
WITH sh : share, data : reptype’ t_struct_TwistStamped, msg_val : val
PRE |_msg OF (tptr t_struct_TwistStamped)]
PROP(writable_share sh)
LOCAL (‘(eq msg_val) (eval_id _msg))
SEP (‘(data_at sh t_struct_TwistStamped (repinj _ data)) ‘(msg_val);
‘(data_at_ sh t_struct_TwistStamped)
(eval_var _landshark_left_encoder_velocity_msg
t_struct_TwistStamped))
POST | tvoid | PROP() LOCAL()
SEP (‘(data_at sh t_struct_TwistStamped (repinj _ data)) (‘msg_val);
‘(data_at sh t_struct_TwistStamped (repinj _ data))
(eval_var _landshark_left_encoder_velocity_msg
t_struct_TwistStamped)).

Fig. 10. Callback function specification

function shown in Figure 11, which copies the value from the sensor message to
the global variable. In this definition, the keyword DECLARE relates the specifica-
tion to the function id which is _landshark_left_encoder_velocity_callback in this
example. WITH notation provides names of Coq variables that can be mentioned
in both the precondition and the postcondition. It uses data_at to indicate the
memory of variable contains some value. This data_at predicate requires the
memory access permission which is described as share. It can be a read permis-
sion share, write permission share or other permissions. VST uses eval_id to get
the memory address of the pointer pointing to and eval_var to get the memory
address of a variable. reptype is a function to transfer the Clight data structure
type to Coq type, so we can provide Coq data value as witness when calling this

function. repinj indicates that the value is a initialized value. PRE notation gives
the precondition of the function, which is parameterized with variable ids and
their types. In this example, the precondition indicates that the function holds
the writing permission on the memory; the value of the pointer _msg is equal
to msg_val; value data is stored in the memory address msg_val; and the global
variable _landshark_left_encoder_velocity_msg is stored in memory of address
with unknown value. The postcondition, provided by POST, indicates that the
value stored in the _msg and _landshark_left_encoder_velocity_msg are both
data. There are more details about the function specification in the book |[3].

void landshark_left_encoder_velocity_callback(TwistStamped* msg)

{
double temp;
temp = (*msg).twist.linear.x;
landshark_left_encoder_velocity_msg.twist.linear.x = temp;
temp = (*msg).twist.linear.y;
landshark_left_encoder_velocity_msg.twist.linear.y = temp;
temp = (*msg).twist.linear.z;
landshark_left_encoder_velocity_msg.twist.linear.z = temp;
temp = (*msg).twist.angular.x;
landshark_left_encoder_velocity_msg.twist.angular.x = temp;
temp = (*msg).twist.angular.y;
landshark_left_encoder_velocity_msg.twist.angular.y = temp;
temp = (*msg).twist.angular.z;
landshark_left_encoder_velocity_msg.twist.angular.z = temp;
return;

Fig. 11. Generated callback function C code

The function specifications of input glue and output glue are similar to the
callback function. The difference is that the postcondition specifies value of the
Controller_U of input_glue function and command value of output_glue func-
tion according to the interface relation. As shown in Figure 12, we specify for
the input_glue function that the value of Controller_U is from fields of those
three global message variables.

5.3 Specification of ROS API functions.

For the code proof, we have to supply specifications of ROS API functions called
by the code. These specifications are treated as assumptions in the proof. Here,
specification of SpinOnce presents a challenge. The function implicitly invokes
the registered callback functions to update global variables with new sensor val-
ues. The straightforward way to specify SpinOnce is to refer to the specifications

Definition input_glue_spec :=

DECLARE _input_glue

WITH sh : share, datal : reptype t_struct_TwistStamped,
data2 : reptype t_struct_TwistStamped,
data3 : reptype t_struct_TwistStamped

PRE || PROP() LOCAL()

SEP(

‘(data_at sh t_struct_TwistStamped datal)

(eval_var _landshark_left_encoder_velocity_msg t_struct_TwistStamped);

‘(data_at sh t_struct_TwistStamped data2)
(eval_var _landshark_right_encoder_velocity_msg t_struct_TwistStamped);
‘(data_at sh t_struct_TwistStamped data3)
(eval_var _landshark_gps_velocity_msg t_struct_TwistStamped);
(data_at_ sh t_struct_ExternalInputs_Controller)
(eval_var _Controller_U t_struct_Externallnputs_Controller))
POST [tvoid]
PROP() LOCAL()
SEP(
‘(data_at sh t_struct_TwistStamped datal)
(eval_var _landshark_left_encoder_velocity_msg t_struct_TwistStamped);
‘(data_at sh t_struct_TwistStamped data2)

(eval_var _landshark_right_encoder_velocity_msg t_struct_TwistStamped);
‘(data_at sh t_struct_TwistStamped data3)
(
(
(
(

¢

eval_var _landshark_gps_velocity_msg t_struct_TwistStamped);
data_at sh t_struct_ExternalInputs_Controller

(fst(fst datal), (fst(fst data2), fst(fst datad)))))

eval_var _Controller_U t_struct_Externallnputs_Controller)

‘

Fig. 12. Input Glue Functions Specification

of the callbacks. However, currently, VST does not support using other function
specifications to construct a specification. Therefore, we specify the SpinOnce
function using the global variables update directly, as shown in Figure 13, essen-
tially incorporating callback specifications directly into the SpinOnce specifica-
tion. This specification has the precondition that the global variables are stored
somewhere of memory and postcondition that the global variables are updated
to the provided data.

5.4 Code proof strategy

We use the tactics from VST proof automation to prove the property specified by
the function specification. For each function, the proof starts with the function
precondition as proof context. We then apply the VST tactics for the current
statement of function body. Each tactic execution updates the proof context
by calculating the postcondition of the statement and advances to the next

Definition spinOnce_spec :=
DECLARE _ros_spinOnce
WITH sh : share, datal : reptype t_struct_TwistStamped,
data2 : reptype t_struct_TwistStamped,
data3 : reptype t_struct_TwistStamped
PRE || PROP() LOCAL() SEP(
‘(data_at_ sh t_struct_TwistStamped)
(eval_var _landshark_left_encoder_velocity_msg t_struct_TwistStamped);
‘(data_at_ sh t_struct_TwistStamped)
(eval_var _landshark_right_encoder_velocity_msg
t_struct_TwistStamped);
‘(data_at_ sh t_struct_TwistStamped)
(eval_var _landshark_gps_velocity_msg t_struct_TwistStamped))
POST [tvoid]
PROP() LOCAL()
SEP(
‘(data_at sh t_struct_TwistStamped datal)
(eval_var _landshark_left_encoder_velocity_msg t_struct_TwistStamped);
‘(data_at sh t_struct_TwistStamped data2)
(eval_var _landshark_right_encoder_velocity_msg t_struct_TwistStamped);
‘(data_at sh t_struct_TwistStamped data3)
(eval_var _landshark_gps_velocity_msg t_struct_TwistStamped)).

Fig. 13. SpinOnce Function Specification

statement, until the end of the function body is reached. At that point, the
context should imply the function postcondition.

6 Code Generator Proof

6.1 Property of the code generator

We develop the code generator in Coq, which makes it possible to verify prop-
erties of the code generator itself. One of the interesting properties is the gen-
eralized DDC property that every generated ROS glue code from a valid ROS
node model will satisfy the DDC property defined in the Section 5. Intuitively,
we should prove that for any input ROS node model, our function template
instance satisfies our function specification instance. However, VST tactics can
only reason about closed code, it cannot specify properties of our AST tem-
plates. Therefore, we cannot directly verify these templates. Instead, we analyze
what properties are required of code generation in order to guarantee the DDC
property of the generated code.

The DDC property of generated code states that the destination variable holds
the desired value according to the ROS node model before it is used. This DDC
property can be implied by three code generation properties. We would like to

use the input_glue function to analyze how the following three code generation
properties imply the DDC property of generated code.

Definition input_glue_body_statement
global_expr control_expr: statement :—
(Ssequence
(Sset temp_id (global_expr)
(Sassign (control_expr)
(Etempvar temp_id temp_type))

).

Fig. 14. Input Glue Function Body Template

Let us first look at one piece of statement template of the input glue function
body as shown in Figure 14. In this template, it has two parameters global_expr
field expression of global message variable and control_expr field expression of
Controller_U. It generates two statements: one is copying the message filed value
(global_expr) to temporary variable (temp-_id); the other is setting one field (con-
trol_expr) of controller variable with temporary variable. We want the DDC prop-
erty of input glue_function described in Section 5.2 to be satisfied by generated
instance of this template.

The DDC property of input glue_function is specified in Figure 12. The first
code generation property is that the origin (global_expr) and the destination
(control_expr) should keep the corresponding relation according to the ROS
node model. It ensures that the data is delivered from the right origin to the
right destination according to the ROS node model. In this case, global_expr and
control_expr in the input_glue function should be consistent with the interface
relation. This property guarantees that the Controller_U fields will be assigned
by the values from corresponding fields shown in Table 1.

The second property is the valid assignment property, which requires only
that the left and right sides of an assignment have the same type. This property
implies that the destination variables do get the assigned value after this assign-
ment according to the axiom semantics of VST. In this case, Controller_U will
hold the value from field z of those three global message variables in Table 1.
So with the first and second code generation property, the input_glue function
specification shown in Figure 12 is guaranteed. The last code generation prop-
erty is that the destination variable is not re-assigned by other values before it
fulfills its duty. The third property guarantees that the value of Controller_U is
preserved until the Controller_step function is invoked.

6.2 Proof of the generalized DDC property

In this section, we discuss the proof of the three code generator properties pre-
sented above. The first property is that we instantiate the input_glue function

assignment template correctly according to the input ROS node model inter-
face relation. We maintain a list of expressions for each side in the resulting
assignments. For the input glue function body, there are lists for global_expr
and control_expr. The first property can be proven by showing that the lists
of expressions are consistent with ROS node model interface relation, as stated
by the lemma in Figure 15. In this lemma, lg_expr is the list expression for
global_expr, while lc_expr is the list of expressions for control_expr. lir is the
list of interface relation from Table 1. To prove the consistency, we verify that
the fields of those expression list is identical of the fields in the interface relation.

Lemma relation_consistency_checking :
forall (lir : list irelation) (lg_expr lc_expr : list expr),
lg_expr — gen_list_global_variable_expr_input_glue lir —
lc_expr — gen_list_controller_expr_input_glue lir —
relation_consistency_checking lir 1g_expr lc_expr.

Fig. 15. Relation consistency of the input glue function

For the valid assignment property, we only need to check that the lists of
types for the left and right sides of assignment are consistent. The type check-
ing function for the input_glue function is shown in Figure 16. Since user may
specify an inconsistent ROS node model, mapping a ROS message field with one
type to controller input with a different type, the generated assignment can be
invalid. The type checking function is applied before generating the input_glue
function. If type checking returns FALSE, ROSGen set the error flag to true and
stops generating code. In this way, we guarantee that the generated code always
satisfies the valid assignment property.

Fixpoint type_checking_input_glue (1type_global_fields
ltype_controller_fields : list type) : bool :=

match ltype_global_fields, 1type_controller_fields with
[I, I = true
| tg:: 1typeg, tc:: 1typec = andb (type_equal tg tc)

(type_checking_input_glue ltypeg ltypec)

|_, _ = false

end.

Fig. 16. Type checking for input glue function

For the third property, we verify the preservation property by checking that
there is no new assignment for the destination variable between input_glue func-
tion and Controller_step function. This is quite strait forward for our cases,

because there is no other statements between input-glue function and Con-
troller_step function in our loop function template. Furthermore, if we have to
add additional statements between input_glue and Controller_U calling state-
ments, it is reasonable to add constraint that they don’t involve manipulation
on the Controller_U heap, because Controller_U is destined as input of Con-
troller_step by copying value of global message. According to the separation
logic of VST, the value of Controller_U is still preserved if those statements
manipulate variables in different heap.

7 Related Work

There has been much work on automatic generation of platform-specific glue
code based on the architectural model of the system and the underlying platform
specification. In [10,11], code generation for a variety of platforms is performed
using AADL models to represent hardware and software architectures and their
properties relevant for code generation. None of these papers targeted the ROS
platform. More importantly, they do not consider verification of the generated
code nor the code generator itself.

There is also a similarity between the intent of our approach and verification
of model transformations in domain-specific languages. Most of that work, how-
ever, is done in the context of behavioral models, with the goal of ensuring that
syntactic constraints are preserved by the transformation [12,13,14]. By contrast,
we start with an architectural model, where behavior is implicit, and generate
executable code.

8 Conclusions

We propose a verified framework ROSGen for generating glue code for ROS-
based control systems. We start with a model of a ROS node capturing external
connections of the node and parameters needed to execute the node. The code
generator, implemented in Coq, uses this model to instantiate Clight templates
and use the VST toolset to reason about the code. We then use CompCert
utilities to generate C source code from Clight AST. We discuss how to generalize
the proof of data delivery correctness for the generated code to a proof of data
delivery correctness for the code generator itself. We apply the approach to the
cruise control system for the LandShark robotic vehicle.

Our plans for future work include extending the proof approach to directly
reason over quantified Clight templates, allowing for a more natural proof of the
code generator correctness. Furthermore, we plan to extend the framework to
cover the step function, to be able to reason about control-related properties of
the code, in addition to the data delivery properties.

Acknowledgment

Thanks to Andrew W. Appel and Joey Dodds for help on applying VST and
separation logic.

References

10.

11.

12.

13.

14.

. James B Dabney and Thomas L Harman. Mastering Simulink 4. Prentice Hall

PTR, 2001.
Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on uppaal. In
Formal methods for the design of real-time systems, pages 200-236. Springer, 2004.

. Nicolas Halbwachs. A synchronous language at work: the story of lustre. Formal

Methods for Industrial Critical Systems: A Survey of Applications, pages 15-31,
2005.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. ROS: an open-source robot operating system.
In ICRA workshop on open source software, volume 3, 2009.

The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2004. Version 8.0.

Andrew W Appel. Verified software toolchain. In Programming Languages and
Systems, pages 1-17. Springer, 2011.

Xavier Leroy. The compcert c verified compiler, 2012.

Andrew W Appel, Dockins Robert, Aquinas Hobor, Lennart Beringer, Josiah
Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for
Certified Compilers. Cambridge University Press, 2014.

Miroslav Pajic, Nicola Bezzo, James Weimer, Oleg Sokolsky, Nathan Michael,
George J Pappas, Paulo Tabuada, and Insup Lee. Demo abstract: Synthesis of
platform-aware attack-resilient vehicular systems. In Cyber-Physical Systems (1C-
CPS), 2013 ACM/IEEE International Conference on, pages 251-251. IEEE, 2013.
Gilles Lasnier, Bechir Zalila, Laurent Pautet, and Jérome Hugues. Ocarina : An
environment for aadl models analysis and automatic code generation for high in-
tegrity applications. In Reliable Software Technologies: Ada-Europe 2009, volume
5570 of Lecture Notes in Computer Science, pages 237-250. Springer Berlin / Hei-
delberg, 2009.

BaekGyu Kim, Linh TX Phan, Oleg Sokolsky, and Insup Lee. Platform-dependent
code generation for embedded real-time software. In Compilers, Architecture and
Synthesis for Embedded Systems (CASES), 2013 International Conference on,
pages 1-10. IEEE, 2013.

Anantha Narayanan and Gabor Karsai. Towards verifying model transformations.
In Proceedings of the 5" International Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT 2006), pages 191-200, 2008.

Jordi Cabot, Robert Claris6, Esther Guerra, and Juan de Lara. Verification and
validation of declarative model-to-model transformations through invariants. Jour-
nal of Systems and Software, 83(2):283-302, 2010.

Levi Lucio and Hans Vangheluwe. Model transformations to verify model transfor-
mations. In Proceedings of the Workshop on Verification of Model Transformations,
June 2013.

	Verified Generation of Glue Code for ROS-based Control Systems
	Introduction
	Proof Environment
	Coq
	CompCert
	Verified software toolchain

	ROS-based control system
	Robot operating system
	Case study of LandShark control system

	Code Generation
	ROSLab tool
	ROS node model
	ROSGen
	Symbol table
	Code templates

	Code Proof
	Data delivery correctness property of glue code
	Generating function specifications
	Specification of ROS API functions.
	Code proof strategy

	Code Generator Proof
	Property of the code generator
	Proof of the generalized DDC property

	Related Work
	Conclusions

