
Instrumentation of Open-Source Software

For Intrusion Detection
William Mahoney

University of Nebraska at Omaha
282F PKI, 6001 Dodge Street

Omaha, Nebraska 68182-0500
1-402-554-3975

wmahoney@unomaha.edu

William L. Sousan
Computer Science Department

University of Nebraska at Omaha
Omaha, Nebraska

1-402-554-2423

wsousan@unomaha.edu

ABSTRACT
A significant number of cyber assaults are attempted against open
source internet support software written in C, C++, or Java.
Examples of these software packages include the Apache web
server, open source DHCP servers, and network share software
such as Samba. These attacks attempt to take advantage of
inadvertent flaws left in software systems due to a lack of
complete testing, inexperienced developers, intentional backdoors
into the system, and other reasons. Detecting all of the flaws in a
large system is still a daunting, unrealistic task. If it is not possible
to completely secure a system, there is a desire to at least detect
intrusion attempts in order to stop them while in progress, or
repair the damage at a later date.

The information assurance area of expertise known as “intrusion
detection” attempts to sense unauthorized attempts to obtain
access to or manipulate information, or to deny the information to
other legitimate users. There are several traditional methods used
for intrusion detection, which can be categorized into two broad
classes: Anomaly Detection, and Misuse Detection.

Anomaly Detection uses statistical approaches and pattern
prediction techniques to generate profiles of “typical” user
interaction with a system. For example, a certain percentage of the
page accesses on a web site may be to a log-in page, and a certain
percentage may refer to a page showing the users “shopping cart”.
Occasionally the user will mistype their password and the log in
will fail; for this and other reasons it is likely that more references
would be made to the login page than the shopping cart page. If,
though, certain pages are suddenly referenced far more frequently,
this is an unusual activity and may indicate an intrusion attempt.
The advantages of this technique include the capability to detect
intrusions which other methods miss, and the fact that the
systems are generally adaptable to change over time. But anomaly
detection via statistical approaches suffers from a few drawbacks.
For example, a nefarious user who knows that the system is
adaptable can gradually change the probability for future events
until the behavior is considered to be normal. At that point the
attacker can penetrate the system without triggering any of the
detection alarms. As a counter to these approaches, many
anomaly intrusion detection systems also incorporate some form

of neural network, which learns to predict a user’s next activity
and signals an alarm when this prediction is not met.

Misuse Detection systems are typified by expert system software
which has knowledge of many known attack scenarios and can
monitor user behavior searching for these patterns. A misuse
detection system can be thought of as more similar to anti-virus
software, which continually searches files and memory for known
attack patterns, and alerts the user if any are matched. Misuse
systems include a state-based component called an “anticipator”,
which tries to predict the next activity that will occur on a system.
A knowledge base contains the scenarios which the expert system
uses to make this prediction, and the audit trail in the system is
examined by the expert system to locate partial matches to these
patterns. A wildly differing “next event” in a pattern could be an
indicator that an intrusion attempt is in progress.

Both types of intrusion detection systems can rely on a variety of
data sources in order to build an accurate picture of the normal
versus abnormal system activity. However these data sources are
almost exclusively comprised of two types: network traffic, and
audit logs [1].

This research presents a new approach to generating records for
intrusion detection by means of enhancements to the GCC
compiler suite. These modifications automatically insert
instrumentation calls into the compiled code; the intent of the
instrumentation is to generate trace data for intrusion detection
systems. Open source code such as a web server can be compiled
in this manner, and the execution path of the server can be
observed externally in near real-time. (We claim only “near” real-
time since the instrumentation is typically queued for a short
period between the producing instrumented program and the
intrusion detection software.) This method thus creates a
completely new source of intrusion detection data which can be
incorporated into a detection system.

This “instrumentation compiler” is used for software which is run
in a controlled environment in order to gather typical usage
patterns. These patterns are ideal for an “anticipator” module in a
misuse detection system, as they are made up of the actual
execution path of the software under typical usage scenarios. The
data included in the instrumentation tracks each procedure entry

and exit point in the software as well as the entry to each basic
block in the compiled code.

In a sense the tool appears similar to the Linux utility “gcov” and
similar software engineering programs which are used for verifying
that each line of code has been executed and tested. However
“gcov” and similar tools operate in a batch mode where they first
collect statistics, and then later display the program coverage. Our
modifications create trace information as each block of the original
code is executed. The data generated includes the currently
executing function name, the line number in the original software,
and the basic block number (for debugging our system) within the
function itself. The data could obviously be saved to a file for later
analysis, similar to “gcov”. But the data is readily available as the
program executes and thus can serve as an immediate data feed to
our misuse detection system. In addition, our system can change
the coverage dynamically during runtime by indicating which
functions are to be monitored without restarting the system.

This research paper outlines our intrusion detection scheme and
includes two main foci.

First, we discuss the techniques used to modify the internal
representations used by the GCC compilers to allow this
instrumentation. The compiler uses an internal representation
called RTX. Additional calls to the instrumentation functions are
automatically generated in RTX just prior to emitting assembly
language output. The research paper addresses the techniques for
locating the instrumentation points and avoiding problems when
software is compiled with optimization. We also present figures
addressing the slowdown due to the instrumentation overhead and
the additional memory requirements that result by including our
instrumentation. The slowdown in compute-bound programs is
significant, but our focus is typified by heavily I/O bound
processes such as web servers.

Secondly, we have designed and describe a simple a priori domain
specific language which we use in order to test for intrusion
attempts. Since we are implementing a proof of concept system to
determine the feasibility of this method for intrusion detection,
our system does not currently encompass any learning modes;
instead we manually enter rules based on the past known good
observed behavior of the software we are compiling for
instrumentation.

Our domain language is a way in which we can specify possible
sequences of events which are expected from the instrumentation
output, along with the probability of each successor to that event.
In this way, potential state transitions create a DFA-like
automaton. There is one automaton structure for each possible
sequence, and these automatons are traversed in parallel according
to the instrumentation output of the program being observed.
Final states in the DFA correspond to acceptable sequences of
events, while a sufficient number of invalid transitions may be an
indicator of an intrusion attempt. Reaching a final state causes all
automatons to reset to their initial state. Our language is thus
compiled from a human readable format into this set of
automatons, which the intrusion detection system then matches
against the instrumentation coming from the server program in
near real-time.

Our paper lastly outlines the results of this research in general and
the issues we have raised but have not yet addressed.

[1] See for example: DARPA Intrusion Detection Evaluation
Data Sets, Lincoln Laboratory, Massachusetts Institute of
Technology. Available at
http://www.ll.mit.edu/IST/ideval/index.html.

