
Andrew G. West
November 3, 2008

Reputation Management
Algorithms & Testing

2

EigenTrust

● EigenTrust (Hector Garcia-molina, et. al)
● A normalized vector-matrix multiply based method to

aggregate trust such that there is a globally convergent view

Imagine past feedback
between users as a matrix.

The matrix should be
interpreted vector-wise. That
is, column 1 is representative
of user 1's experience with
the other 2 users in the NW.

3

EigenTrust (2)

Then, normalize the matrix vector-wise.

Realize that this normalization means that
our end results will only have relative
interpretations, not absolute ones

At each position calculate the
“feedback integer” as:

fback_int := pos-neg;
if(fback_int < 0)

fback_int := 0

4

EigenTrust (3)

Finally, we multiply using the equations at
left. We compute t_k for sufficiently high k
(usually k=7-10) such that t converges.

The resultant t is the 'global trust vector' a
relative ranking of trust between nodes.

Note: The coefficients on the multiplication
allow one to fine tune how much 'extra'
influence pre-trusted users should have.

Note: Additional steps needed to distribute
and secure this computation.

Next, initialize pre-trust vector p, which encodes a-priori
notions of trust. If there are no pre-trusted users, as in this
case, each entry should simply be 1/n (n = # peers).

5

EigenTrust (4)

● What EigenTrust gives us
● A global average, with more weight given to pre-trusted peers

● Advantages of EigenTrust
● Mathematically elegant
● Scalable computation (global nature + some tricks)
● Trust doesn't weaken via transitivity (good for sparseness)

● Disadvantages of EigenTrust
● Normalization leads to relative interpretation
● No means of measuring negative trust
● Globally agreed upon trust vector might not be the best idea in

the face of very malignant networks

6

TNA-SL

● Trust Network Analysis w/Subjective Logic (Josang)
● Uses Subjective Logic operators to analyze network graphs

Trust is stored in Opinions, which
are a 4-tuple (b, d, u, a):

b = belief d = disbelief
u = uncertainty a = a-priori trust

where (b+d+u)=1.0 and a=[0...1]

'Trust' in an Opinion is equal to the
expected value shown at left

Table shows how to go from prior
feedback -> Opinion.

Opinion: (b, d, u, a)

Expected Value: b+u*a

7

Subjective Logic

● Two Subjective Logic operators are of note:
● 'Discount' for transitivity and 'consensus' for averaging

'Discount' encodes transitivity. Trust
is weakened when a hop is taken.
The discount is weaker if the
intermediate node is highly trusted
and vice versa.

C

BA A B

C

'Consensus' let's us average
opinions. Averaging decreases
uncertainty, while averaging belief
and disbelief.

8

DSPG

● We're given the graph below (with Opinions on edges)
and want to determine the trust A has in E. How?

We could enumerate all paths, use discount to calculate trust
of each path, then consensus them all together? But what
about cycles? And this is a computational nightmare,
especially for well connected graphs!

Instead, we derive a Direct Series Parallel Graph (DSPG). A
DSPG is a graph created using the two operations below.

CB

A

D

E

A C A C

A CA B C

Series Composition Parallel Composition

9

DSPG (2)

The graph at left cannot be constructed as a DSPG. So how
do we go about getting one?

1. Enumerate all paths
2. Rank that set of paths by confidence
3. Add paths (or branches of paths) to the DSPG assuming

their addition does not violate DSPG constraints, per the
order determined in (2).

4. Once done, calculate trust via the canonical expression
that can be derived for our DSPG.

The result? The DSPG that maximizes confidence (limits
uncertainty), and therefore is the most accurate aggregation
possible

CB

A

D

E

Why do we want a DSPG? Notice the construction grammar can be represented
precisely by the discount and consensus operators. Thus, if our trust dependency graph
is a DSPG, a trust expression with SL-operators will be a terse canonical expression

10

TNA-SL

● What TNA-SL gives us
● A user-centric calculation with transitive discount

● Advantages of TNA-SLA
● Trust values have absolute interpretation on [0...1] (beta-PDF)
● Negative trust is representable via the 'disbelief' field
● User-centric views allow us to disregard malicious opinions

● Disadvantages of TNA-SL
● Lacks scalability. Connected? 2^N paths to enumerate!

● Plus these SL-ops are hefty operators.
● Transitivity weakens trust; could be bad in very sparse NW

● Good info several hops away could be discounted to oblivion

11

P2P-Sim Intro

● So how to test and compare and these systems?
● EigenTrust runs simulations, using a closed-source sim, and

the TNA-SL paper is too theoretical to do anything of the sort.

● We propose (and have implemented) a trace-driven
simulator built in the P2P-style (C & Java)
● New trust/reputation management algorithms can be included

via a simple calling interface
● Traces can be-run using different TMs allowing comparison

12

Traces

● Traces contain 4 different data sets:
● 1. The header – Contains command-line arguments like #

users, # transactions, and other sizing parameters.
● 2. User initializations – Triples (u, c, h), stating user u cleans

up invalid files c% of the time, and provides honest feedback
h% of the time. See Table 1 for user types.

● 3. Library initializations – Triples (u, f,
v), stating user u has file f in his/her
initial lib with validity v (a Boolean).

● 4. Static transactions – Pairs (u, f)
stating user u wishes to obtain file f.

13

Simulator

● While there are more transactions:
● 1. Parse a file request from trace file.
● 2. If requester has available DL bandwidth, proceed...
● 3. Requester computes trust values for other NW peers
● 4. Requester publishes file query to NW
● 5. Using trust-values, requester source-selects from UL-

bandwidth available peers who answered query
● 6. Copy source file to requester library
● 7. Requestee provides feedback on source

14

Sanity Check

In this example...

Malicious providers keep
invalid files, but they are
completely honest about
their malignancy, and
that of others.

This is a trivial system to
manage. Really just a
sanity check on
implementation.

Note: “None” is a control
line demonstrating the
lack of a trust system.

15

Malicious & Pre-Trust

In this example...

We see “purely
malicious” users, they
keep invalid files (try to
get them), and
consistently provide
dishonest feedback.

TNA-SL (with its user
centric views) passes
with flying colors on all
accounts. EigenTrust
requires the inclusion of
pre-trusted users to get
good performance

16

Very Sparse!

In this example...

So far we've been seeing
graphs with LOTS of
transactions; showing
convergent behavior.

Real P2P situations are
much sparser. We see
that here. With less data,
both systems are reliant
on the notion of pre-trust
to attain good
performance

17

Quick Convergence

In this example...

We see that because
users generally
(definitely, in the case of
our simulator) behave
consistently, trust values
converge very quickly.

We've used this fact to
create speedup
strategies so we can
overcome complexity
issues (and thus
experiment with larger
networks).

18

Conclusions

● Concerning the P2P-Simulator
● Solid useful tool. Implementation increased understanding.
● Simulator weaknesses:

● Closed world – Users don't come and go. New files don't appear.
● Uniform distro – Would be nice to fit distributions to actual P2P data
● Weaknesses? We wanted to minimalize parameterization, keep static

● Malicious model weaknesses:
● Does it make sense a NW with 75% bad users can still be managed?
● To test systems more effectively, malicious users need more power
● Foremost, bad users should act collectively, not just in isolation

● Trust/Reputation Systems
● There are bunches. We'll never say which is “best” but

perhaps we can examine on a situation basis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

