
An Evaluation Framework for
Reputation Management Systems∗

Andrew G. West Sampath Kannan
westand@cis.upenn.edu kannan@cis.upenn.edu
University of Pennsylvania, USA University of Pennsylvania, USA

Insup Lee Oleg Sokolsky
lee@cis.upenn.edu sokolsky@cis.upenn.edu
University of Pennsylvania, USA University of Pennsylvania, USA

ABSTRACT

Reputation management (RM) is employed in distributed and peer-to-peer networks to help users
compute a measure of trust in other users based on initial belief, observed behavior, and run-time
feedback. These trust values influence how, or with whom, a user will interact. Existing literature
on RM focuses primarily on algorithm development, not comparative analysis. To remedy this,
we propose an evaluation framework based on the trace-simulator paradigm. Trace file
generation emulates a variety of network configurations, and particular attention is given to
modeling malicious user behavior. Simulation is trace-based and incremental trust calculation
techniques are developed to allow experimentation with networks of substantial size. The
described framework is available as open source so that researchers can evaluate the
effectiveness of other reputation management techniques and/or extend functionality.
 This chapter reports on our framework’s design decisions. Our goal being to build a general-
purpose simulator, we have the opportunity to characterize the breadth of existing RM systems.
Further, we demonstrate our tool using two reputation algorithms (EigenTrust and a modified
TNA-SL) under varied network conditions. Our analysis permits us to make claims about the
algorithms’ comparative merits. We conclude that such systems, assuming their distribution is
secure, are highly effective at managing trust, even against adversarial collectives.

Keywords: reputation management; reputation algorithm; EigenTrust; TNA-SL; a priori trust;
transitive trust; malicious collective; bandwidth throttling; feedback; peer-to-peer network;
decentralized topology; trust management; network trace; Zipf distribution.

INTRODUCTION

At the start of the network-age the client-server (centralized) model was the dominant topology.
Trust in these servers was implicit and security measures focused on access control and user
permissions. More recently, new network architectures and computing paradigms have emerged
such as distributed systems, peer-to-peer (P2P) networks, and ad-hoc mobile computing.

Frequently, all network nodes have the ability to both request services from and provide services
to other users. This is inherently risky since decentralized models typically lack the notions of
authenticity, reliability, and accountability that monolithic servers provide. Nonetheless, well-
behaved decentralized systems are beneficial in comparison to their client-server counterparts.
Advantages include increased service diversity, availability, scalability, and bandwidth.
 Enforcing good behavior is the task of a trust management (TM) system. The seminal work
of Blaze, Feigenbaum, and Lacy (1996) introduced the term -- their system consisted of using
cryptographically delegated credentials and policies to specify static access control rights. In
reputation management1 (RM), rather than determining if a user has the authority/permission to
do some action, we instead ask: Given permission, how do we expect a user to behave (i.e., what
is his/her reputation)? A systems treatment of these expectations gives rise to a dynamic access
control mechanism which is categorically different than that provided by TM. Reputation
management is implemented by a RM system or reputation algorithm2 (RA).
 Almost universally, RAs work by using past behavior as a basis for future conduct.
Transitive trust is often exploited, especially in the absence of prior interaction between two
parties. To promote a well-intentioned network either bad behavior is punished, good behavior
rewarded, or both. EigenTrust (Kamvar, Schlosser, & Garcia-molina, 2003) and Trust Network
Analysis with Subjective Logic (TNA-SL) (Jøsang, 2001; Jøsang, Hayward, & Pope, 2006) are
two RAs that will be given particular attention herein. For a broader survey of available systems,
readers should review the work of Li and Singhai (2007). One should note that the need for RM
is not confined to purely digital dealings. In fact, eBay manages one of the largest RM systems
(Resnick, & Zeckhauser, 2001), pertaining to the exchange of physical commodities.
 Research concerning RM has been focused on algorithm development with little attention
given to quantitative comparative analysis between existing RAs (qualitative analyses are often
seen, but we feel, insufficient). Tests on some systems, like EigenTrust, use briefly-described,
proprietary, or closed-source simulators (Schlosser, Condie, & Kamvar, 2003). Others, like
TNA-SL, opt for a more theoretical description with no evaluation results. In order to compare
systems such as these and verify author’s claims, an objective simulator is needed. While
network and P2P simulators exist, having the additional overheard of simulating Distributed
Hash Tables (DHTs), latency, network hops, etc., in addition to trust calculation make their use
computationally inappropriate. Furthermore, such simulators offer little abstraction, making the
implementation of RAs inconvenient. Therefore, in this chapter we describe the construction of
an evaluation framework specific to reputation management.
 This chapter is organized as follows: We will begin by standardizing terminology and
justifying our architecture of choice. Trace generation and simulation under this architecture will
then be discussed. Next, evaluation metrics with regard to effectiveness and efficiency will be
introduced. Then, test runs will be used to exemplify behavior and identify potential
shortcomings in our design. Finally, future work will be noted and concluding remarks made.

OVERVIEW OF EVALUATION FRAMEWORK

There are many challenges in building a general-purpose evaluation framework for RM systems.
First, RM is used in a variety of network architectures such as, peer-to-peer (P2P), service-
oriented (SOA), and social networks. Second, there is a tension between simulating realistic
behavior and excessive parameterization. We must find a tractable compromise that yields

accurate trust values. Third, it is a challenge to define user behavior models, especially those
pertaining to malicious users. While good users behave in a predictable manner, malicious users,
especially those acting in a collective manner, may behave in erratic and dynamic ways.
 In this chapter we will address precisely these challenges. Though many approaches are
possible, we will present one that our research and intuition has found most appropriate – while
still giving attention to alternative strategies.

Terminology

We consider systems that consist of users, nodes, or peers. These users are part of a network.
Certain pairs of users have a communication channel between them. In graph theoretic terms,
users are the nodes and these channels are the edges. The graph need not be connected. At any
time, a user may be acting as a provider (server), a requester (client), or both. The items being
requested and traded are termed files but could be representative of services or remote-procedure
calls. Files are either valid or invalid and we assume this is a determination users can make
accurately. A file's validity is permanent, and multiple copies of the same file can exist on a
network. Users are evaluated according to the quality of files they provide to other users. Files
are stored in a user's library and a user enters the network with an initial library. Broadcasting to
determine the set of owners who possess some file is termed a query and the actual request and
acquisition a transaction. Following each transaction, binary3 feedback is expected. Finally, a
user is able to remove files from his/her library, an action we term clean-up.

Architectural Justification

We now describe the infrastructure on which our implementation is based. As our terminology
may have hinted, we believe an underlying P2P network (e.g., a file trading network, akin to
Gnutella) is most appropriate because of its expressiveness. Such an architecture is capable of
emulating several other system models by limiting functionality appropriately.
 For example, suppose one wants to test a system with a mutually exclusive set of clients and
service providers where clients use RM to determine provider reliability. With only slight
modification a P2P framework can simulate such a model. The files being traded become
representative of services. Service providers enter a network with an initial library (of services)
but never make requests. Clients enter the network with an empty initial library, request and
receive services, but clean-up (do not store) every service they receive. By cleaning up, clients
prevent themselves from becoming providers. Feedback can then encode not only if services are
valid or invalid, but also a measure of the quality of service (QoS) provided. Other emulation
scenarios are possible but not described here. For a survey of reputation strategies grouped by
application-domain, see the work of Zhang, Yu, and Irwin (2004).
 Comparability of reputation algorithms is realized via our trace-simulator approach.
Crucially, traces are static in nature; they are pre-generated and not modified during the
simulation phase. The generation of trace files encodes network parameters and is independent of
the RA being tested. These traces are then given to the simulator, which implements the RA, and
other, minimal, dynamic considerations. Thus, multiple simulations, implementing different
RAs, can be run from the same trace. Figure 1 shows this overall architecture.

Figure 1: Overview of evaluation architecture

 By fixing every aspect of a network run except those specific to RAs, the only differences
between runs will be reputation-algorithm specific – ideal for comparison. Adherence to the
static constraint does present some problems, as we will later describe. Nonetheless,
comparability should not be sacrificed as it is precisely the motivation/objective of this work.

TRACE GENERATION

The trace generator is a program that takes network parameters and outputs a static script of a
network run. There is a tension between simplicity and modeling realistic behavior. On one
hand, a rich feature set can model the most complex and subtle of behaviors. On the other,
excessive parameterization might obfuscate results or make it difficult to derive useful statistical
inferences. Also, such exacting detail may be unnecessary for comparing the merits of different
RM methods. We opt for a reasonably simple design and describe it in depth below.

Trace Generation Summary

In our generations/simulations we model a network of users. We have a library of user models,
some corresponding to good users and others to malicious ones. Input parameters tell us how
many users to pick per model. In this paper we assume there is a link between every pair of
users. Each user is also given an initial endowment of files, some valid and others invalid. There
can be many copies of any file. The initial file distribution is also governed by input parameters.
 Generally speaking, a trace is a sequence of queries. Each query specifies a filename and the
user seeking that file (the client). The choice of server from which to download the file will be
made at simulation runtime, taking into account input from the reputation algorithm.
 Users have behavioral choices along two dimensions. First, for each file they download they
can choose to clean-up, i.e., get rid of the file. Good users will tend to clean up invalid files with
high probability to reduce the proliferation of bad files. Malicious users may do just the opposite.
We assume that no clean-up happens on the initial endowment and that users have just one
opportunity to clean-up a file -- immediately after they download it. Second, after each
transaction the client provides universally-observable feedback regarding the server with respect
to the nature of the file served. Good users will tend to provide honest feedback, submitting
positive marks if they received a valid file. Malicious users may tend to do the reverse.
 To account for the rich variety of strategies and motives for adversarial behavior we have
many malicious user models. These models vary with respect to clean-up and honest-feedback
probabilities. We also allow for more subtle malicious behaviors where users behave badly only

some of the time. Malicious collusion is a complex topic reserved for a later section. We also
make the simplifying assumption that malicious behavior is purely probabilistic and independent
of the client or file requested in a particular transaction. We now proceed with a more in-depth
discussion of the trace generation process, beginning with the physical file format.

Trace Files

Our goal is to use the minimum parameterization necessary to realistically exercise the RM
systems being evaluated. Given at the command-line, the most critical arguments are:

1. Number of users in network
2. Behavior model for each user
3. Number of distinct files
4. Probability of file ownership
5. Number of queries/transactions to simulate
6. Maximum number of user connections
7. Bandwidth period, in time units

 These topics will be covered in greater depth in their respective sections. The output of trace
generation is a terse text file with four distinct types of data:

1. Header: The command line arguments are printed. The simulator needs these to size data
structures so they are provided upfront.

2. User Initializations: Triples of the form (u, c, h) where u is the user being initialized, c is
the percentage of the time the user removes an invalid file from his/her library (clean-up),
and h is the percentage of the time the user provides honest feedback. Derived from this
tuple, inverse clean-up, (100 - c), is the percentage of the time a user removes a valid file
from his/her library.

3. Library Initializations: Triples of the form (u, f, v) that state that user u has file f in his/her
initial library with validity v (a Boolean).

4. Static Queries: Pairs of form (u, f) stating user u wishes to obtain file f.

User Models

As alluded to in the previous section, there are only two dimensions of user behavior, the
feedback-honesty and clean-up rates. Table 1 describes the initializations of several user models.
Our selection of user models is not comprehensive. Additional user models can be imagined and
easily implemented in our framework.

Table 1: User initialization parameters

 It should be noted that several of these models were inspired by the threats detailed by
Kamvar et al. (2003) and Hoffman, Zage, & Nita-Rotaru (2008). Because clean-up is a passive
action, clean-up rates are expressed as a range – a precise percentage assignment is made when a
user is initialized. Feedback, meanwhile, is required following each transaction so we expect that
most user models will provide feedback according to a strict pattern.
 We should pause to consider the motivations behind user behavior. A good user simply
wants to obtain a valid copy of the file they query for. Bad users want to deliver invalid files.
The notion of invalidity will vary based on the intentions of the malicious user. Files that are
corrupt or contain viruses will be traded by users who wish to instigate havoc, as these behaviors
are not self-serving. However, the intentional mislabeling and distribution of a music file as a
guerilla advertising tactic could constitute a selfish form of invalidity. Stepping outside of the
P2P realm, manipulation of RM systems can prove much more profitable. Subverting eBay's RA
could have large monetary consequences. We now describe our user models in detail:

• Good: Initializing well-behaved users is straightforward. First, they will provide honest
feedback. Secondly, they will be attentive about their file libraries, removing invalid files
that reside there. A clean-up rate between 90-100% permits some degree of apathy, as we
cannot expect good users to be ideal ones.

• Purely Malicious: A user misbehaving in both dimensions is termed purely malicious.
Such users retain invalid files, dispose of valid ones, and consistently lie about the nature
of the files they receive. Because they misbehave with such consistency a RA may
quickly identify such users and take preventive measures.

• Single Dimension Malicious: Malicious providers and feedback malicious are
complementary user models that misbehave along a single axis. Such strategies can be
devastating in systems where trust is evaluated along only one dimension. For example,
providing dishonest feedback is not of first order consequence (i.e., liars are not
punished) in a system like EigenTrust. Feedback dishonesty seems particularly hard to
detect because systems rely on non-automated and user-provided soft-feedback4. The
deficiencies and game-theoretic strategies of soft-feedback are well investigated by
Resnick and Zeckhauser (2001) in their analysis of the eBay system. The DIRECT
(Zhang, Lin, & Klefstad, 2006) and TrustGuard (Srivatsa, Xiong, & Liu, 2005)
approaches attempt to discover outlying feedback patterns but require continuous
feedback variables. However, the feedback-malicious model that exploits this weakness
does not directly benefit the user implementing it. Because the feedback-malicious user

maintains a valid library he/she cannot distribute the invalid files of his/her choice (i.e.,
the motive). Instead, by exploiting transitive trust such users can act as a gateway, using
the trust others likely have in them to direct users to invalid libraries. This is a malicious
approach we later validate in our description of cooperative strategies.
 In contrast, effective strategies involving malicious providers are harder to envision.
Trust can still be managed in networks overrun with such users because they are honest
about where bad files reside. Thus, it is trivial to avoid downloading from such providers
(for those who desire to do so). Nonetheless, the model is included for completeness.

• Disguised Malicious: In the absence of a sophisticated collective strategy (see below),
users consistently distributing invalid files will likely be identified as such. Often, this
means they will be sent a smaller amount of request traffic from good users and be unable
to distribute their files. An effective strategy may be to act well-behaved slightly more
often than bad. This way, systems that rely on normalization and casual relationships
between positive and negative feedbacks will think of them as (weakly) good users. This
is the strategy of the disguised malicious user. Some systems, like TNA-SL combat this
by using beta-PDF strategies that consider the raw number of feedbacks.

• Sybil Attacker: Based on the model described by Douceur (2002), the Sybil attacker takes
advantage of the low-entry threshold present in most networks. With an invalid library,
the attacker waits until he/she is a provider in some transaction, deletes his/her account,
and then re-appears on the network under a different username. The neutral trust
associated with the new account is preferable to the (presumably) negative trust of the old
one. For implementation purposes we simply prohibit feedback from being recorded by
Sybil users, or concerning them. This prevents expansive network growth from
disposable ‘single-use’ users. Having the Sybil attacker model could help analyze the
effectiveness of RM systems that give preference to experienced users.

• Malicious Collectives: A group of cooperating malicious users presents the most severe
threat to a decentralized system. Isolated malicious users participate in casual
cooperation, for example, when they provide positive feedback to an anonymous user that
sent them an invalid file. However, organized tight cooperation, characterized by
intelligent and peer-aware strategies, is the real danger. RM systems deter this threat by
using anonymous identifiers and DHTs with local voting to blur the network topology.
Thus, such users may have an out-of-band communication method to coordinate their
activities. Effectively modeling such behavior is a topic given considerable attention in a
later section entitled ‘Empowering Malicious Collectives’.

 Of course, the raw number of users in a trace is dependent on the needs of whoever is
generating it. Simulating larger networks will produce more consistent results, while sacrificing
efficiency. Similarly, the number of users per model will vary depending on the trust scenario
being tested. We can, however, offer some guidance in this selection. We should assume we are
modeling a network organized with good intentions. Malicious users rarely create networks; they
try to infiltrate existing ones5. Therefore, we wish to study an infection model and invalid file
propagation. Furthermore, no RA will be able to revive a network that is severely compromised

from the outset. For these reasons, individuals should not generate traces that are initially amok
with invalidity, i.e., with an excess of malicious peers.

Library Initialization

Library composition is modeled as a Zipf distribution (Zipf, 1949). Many studies have been
completed, including that of Breslau, Cao, Fan, Phillips, and Shenker (1999) that demonstrate
Zipf frequencies accurately model file/service popularity in many Internet domains. Zipf
parameter α is provided at the command line such that file i has a (1 / iα) probability of being
owned by a particular user6. The validity of an initial file copy is determined by the clean-up-rate
of the user who owns it. For example, a user with cleanup-rate c has a c percent chance of an
initial file being valid. Clean-up is not performed during initial library construction.
 Under such a distribution every user will have an initial library of identical expected size.
This is an unrealistic assumption but one we are willing to make for the sake of simplicity and
because we believe that it will not affect our empirical results significantly.
 Choosing a good α value is a challenge. Arguments can be made for both a high and low α
value. On one hand, studies like that of Breslau et al. (1999) suggest α=0.8 or higher is the best
reflection of real-life data patterns. On the other, such a high α value may be problematic. If one
wants to ‘schedule’ a large number of queries/transactions there must be sufficient resources
such that every user does not acquire every file. A high α value makes initial libraries small and
non-diverse (due to the Zipf distribution’s tail), exacerbating such a problem. There are three
remedies. First, more users can be added, but this creates an acute efficiency problem. Second,
the file set can be made larger. However, the nature of Zipf’s law is such that the file set would
need a substantial increase, and substantial memory footprint, to make user’s libraries marginally
more diverse. Third, α can be decreased. We prefer this course of action and default to α=0.4, a
value simulation has shown to be a good compromise.

Query Generation

The final consideration is who should be requesting files, which files, and in what quantity? Our
generator supports two modes, which we call naïve and intelligent query generation. In the naïve
version, a random user requests a random file, and this is recorded as a query in the trace file.
The intelligent version adds stipulations to prevent a large number of incomplete-able
transactions at runtime. First, a user may not request a file they already possess or requested in
the past. This eliminates the need for any user to store multiple copies of the same file or
determine which copy should persist. Second, a requested file must exist in the network. A query
which returns no results is inconsequential. This is not, however, a guarantee a file will be
available when it is requested as all owners may have no bandwidth (see below).
 Every user has an equal probability of being a file requester. Though some user models may
request files at varying rates, this is not something we attempt to model here. Which file is
requested is dictated by the same Zipf distribution used to populate initial libraries.
 We envision several future improvements in this area. First, P2P interactions usually occur in
cliques, with users only interested in some genres of files as opposed to all those available. This
is a point revisited in the ‘Future Work’ section. Second, it is intuitive to expect a good user who

receives a bad file to re-query and attempt to obtain a valid copy. Unfortunately, the static nature
of our trace nature cannot support such an operation.

TRACE SIMULATION

We next describe the simulator wherein the trace is dynamically run and relevant statistics are
output. After initialization is complete the simulator proceeds in the following simplified loop:

While more queries remain:
 Read query from trace file
 Broadcast query to determine potential providers
 Compute trust-values for relevant user pairs
 Select bandwidth-available source user
 Copy source file to requester's library
 Requester submits feedback concerning source
End

Bandwidth & Load Distribution

With RAs it is possible for the global trust view to converge and identify a single or small set of
users as ‘most trustworthy.’ These nodes are likely to be overwhelmed with provider requests.
Bandwidth limitations will prevent some of these requests from being fulfilled or will serve the
files at a very slow rate (poor QoS) (Papaioannou & Stamoulis, 2004). Some notion of load
distribution is needed. Systems like EigenTrust handle this implicitly in their reputation
management systems. Others, like TNA-SL, give the topic no attention. Load balancing
inherently lowers reputation algorithm performance. Decreasing the load of the most trusted
users means the load will increase for less trusted users, and probabilistically speaking, more
invalid files will be traded. Even so, load balance is a practical necessity.
 We propose that one should ignore load balancing suggestions when implementing a RM
system for the simulator. Instead, the RA should export a relative ordering of users based on trust
values. The simulator’s included bandwidth manager will then objectively handle load balancing
by allowing only bandwidth-available users to participate in transactions.
 Bandwidth restrictions are set by two command-line parameters. Summarily, a user may
have at maximum x connections at any time, and the transaction of a single file requires y time
units. Our simulator has a weak notion of time that permits this description, namely, each query
requires a single time unit and there is only one query per clock tick. A connection is a distinct
upload/download. For example, if x = 2 and y = 100, a user who begins a download at time 21
and another at time 56 will have no download bandwidth available until time 121 when a single
connection becomes available. Since file transmission is not instantaneous, feedback is delayed
until the transaction is complete. Separate upload and download queues are maintained.
 Indeed, our approach to load distribution is a basic one. If one wishes to model variable file
sizes, connection speeds, etc., matters get very (and perhaps unnecessarily) complex. However, it
succeeds in enforcing a tunable and objective model of load balance.

Source Selection

After trust computation it is the requester’s responsibility to use the relative ordering to choose a
source/provider. As Table 2 shows, the desired source varies depending on user model.

Table 2: Source selection by requester model

 The worst option is chosen by users who wish to increase the scope of their invalid libraries,
whereas a random approach allows feedback-focused malicious users to boost the global opinion
of other bad users and mar that of good ones. Intuitively, good users want the best provider.
Recall that only bandwidth-available users can serve as providers. Ties between users with
identical trust values are broken randomly.

Feedback Database

Reputation algorithms aggregate interaction histories to produce a trust value characterizing
some user-to-user relationship. We now describe how these interaction histories are stored. In
our architecture the feedback database (DB) is centralized, so it appears identical from every
user’s viewpoint. A centralized DB means trust computation can be centralized, as well. Our
framework will assume such a centralized trust service exists, for the time being.
 In practice, P2P networks (among other topologies) are not centralized and the DB and/or
computation must be distributed. Nonetheless, when feasible (and responsibly hosted)
centralized DBs are secure and convenient, as distribution may expose holes for exploitation. In
later sections we relax our fully-centralized approach to aid in describing malicious attacks.
 Minimally, a feedback DB needs to store the number of positive and negative prior
interactions between directed (non-symmetric) user pairs. Other data may also be stored, as
required by different RAs. For example, associating a time-stamp with each feedback might
allow an algorithm to weigh recent interactions more heavily than those occurring long ago.
Similarly, context information might be entered, e.g., user X had a negative experience with user
Y with respect to his download of file Z. Such entries may permit trust to be computed at fine
granularity. By querying the DB and retrieving only those rows where Z was the file involved,
and letting the RA aggregate over only these entries, it may be possible to compute trust in
individual files. This is a complex topic we revisit in our ‘Future Work’ section.
 Because we have control over the environment in which our feedback DB operates its
security can be assumed. Real DBs would be afforded no such luxury. It is likely DBs will be
interfaced via a RPC. Ballot-stuffing attacks (Srivatsa et al., 2005) and identity management are
two practical challenges that must be addressed, but are beyond the scope of this work.

REPUTATION ALGORITHMS

There are many RAs in existence (Li & Singhai, 2007) though we will only give attention to
EigenTrust (Kamvar et al., 2003) and a modified TNA-SL (Jøsang et al., 2006). Precise details
of these systems can be found in their respective papers; our concern is with their general
behavior and efficiency. Why these two algorithms? One (EigenTrust) is terse, scalable,
efficient, implementation-ready, and designed with P2P in mind. The other (TNA-SL) is
theoretical, expressive, and inefficient in a P2P setting. By designing our framework with these
two radically different systems in mind, we believe our work will be applicable to the vast
expanse of other RAs that lie between them. Furthermore, the significant differences will make
for more interesting test runs in forthcoming sections.
 The simulator is designed to promote the easy addition of new RAs; a simple calling
interface is used. Most important is the interfaced computeTrust() method. Given a source
user and access to feedback data, it returns a vector quantifying the trust user source has in other
users in the network. At a high-level, we will now describe three RAs for the sake of
familiarizing the reader with their basic operation and implementation.

None (No RA Present)

None simulates the absence of a reputation system and uses exclusively random file-providers.
At initialization all trust values are set to an identical value; every call thereafter allows these
original trust values to persist. Thus, a user model selecting the best/worst source will result in a
tie between all available users that will be broken randomly. This ‘system’ is of little interest,
aside from providing a baseline for comparison purposes.

EigenTrust

EigenTrust (Kamvar et al., 2003) is a system that uses local normalization combined with global
convergence via vector-matrix multiplication. Prior interaction is best visualized as an n×n
matrix where n is the number of peers. Vectors are local to users. For example, the entry in the i-
th row and j-th column describes user j's directed dealings with user i. We will next describe how
trust is calculated in EigenTrust. Figure 2 provides a concrete example.

Figure 2: An example EigenTrust computation

 A relation stores the number of positive (pos) and negative (neg) interactions between two
users. For each relation, a single feedback integer is calculated as max(0,(pos-neg)) as in
example matrix A. Next, these values are normalized on a vector basis (example A’). Normalized
vector p of size n is then initialized to encode a-priori notions of trust. Next, tk is calculated using
the above formulae. For sufficiently high k, vector tk will converge to the left principal
eigenvector of A’, the global trust vector (t∞). The i-th position of t∞ is i's trust value. For our
purposes, k need only be so high that the relative order of trust values is fixed.
 The proper initialization of p is critical to EigenTrust success. Greater weight is given to
those users deemed ‘pre-trusted’. In practice, a small but highly trusted subset of z users are
designated pre-trusted. Then, pi = (1/z) if user i is pre-trusted, and pi = 0, otherwise.

Trust Network Analysis with Subjective Logic (TNA-SL)

Trust Network Analysis with Subjective Logic (TNA-SL) (Jøsang, 2001; Jøsang et al., 2003) is a
system that places greater emphasis on prior direct interaction. Here, trust is stored as an opinion,
a 4-tuple (b, d, u, α) that represents belief, disbelief, uncertainty, and a base-rate, respectively. At
all times (b + d + u) = 1 and α (a real) in [0...1] is used to store a-priori notions of trust.
Converting past interaction into an opinion is done as shown in Table 3. Though there are many
logical operators, two, discount and consensus, are of note. Table 4 shows their calculation.

Table 3: Calculating opinions from prior interaction

 Discount is used to evaluate transitive chains. Discount would be used, for example, if user A
wanted to calculate an opinion about user C using information at intermediate user B. Notionally
this would be written as

.

 Consensus is used to average together two opinions. Suppose user A and user B both have
opinions about user C. To consolidate these, consensus would be used, with notation

.

Table 4: Defining discount and consensus operators

 Computing trust given these operations and a digraph of opinions (constructed from a
feedback DB) is not straightforward. The approach given in the describing paper (Jøsang et al.,
2003) requires one to find an acyclic direct series-parallel graph (DSPG) between the requester
and potential source that minimizes uncertainty. Then, given that DSPG, a single characterizing
opinion is derived by applying the SL-operators (note that discount corresponds to series
composition and consensus to parallel composition). For export to a single trust value, the
expected value of that opinion is calculated as EV = b + αu.
 While theoretically sound, applying this approach to our simulator is computationally
infeasible for three reasons. (1) Our network is fully connected, yielding an exponential number
of paths. (2) The DSPG recognition problem, while solvable in linear time7, becomes
burdensome due to the sheer number of times it must be called (though caching can help). (3)

The described procedure computes trust between just two users. To populate the output vector
the above reduction and analysis would need to be computed n times.
 While the DSPG approach does not apply well to this scenario, the expressiveness of opinion
objects could be beneficial if harnessed in a different manner. How to best and efficiently
aggregate trust remains an open question. When cycles are present it is difficult to exhaustively
analyze a graph. Finding a single most-trusted (or most certain) path is possible, but ignores data
the other (perhaps contrary) paths provide. We have found it effective to use an aggregation
strategy that maximizes the consensus certainty at some depth of search. We do not claim this is
the best means by which to evaluate trust – rather, that it is a reasonable one. Our method
requires no graph refinement, is mathematically elegant, and takes a large amount of global
opinion into account. Furthermore, simulations will demonstrate our technique’s effectiveness.
 To compute trust for a network of n users, a matrix, A, of opinion objects with dimension
n×n is created. Just as in the EigenTrust example, each matrix element defines a user-user
relationship. Table 3 describes how to compute opinions from feedback histories. Then, compute
Ax for large x, using the discount and consensus operators to overload multiplication and
addition, respectively. Because of the non-monotonic nature of the consensus operator and our
lack of normalization, taking A to a high power will not result in convergence (as with
EigenTrust). Instead, belief values will tend towards 0 because the discount operator weakens
trust, and thus, many discounts in a long transitive chain will severely weaken it. Instead, we
create a separate opinion matrix A’, to store the opinion with maximum confidence seen at each
position throughout the multiplication process. We define EV(A’) to be the global trust matrix
and EV(A’i , j) represents the trust user j has in user i.
 Because our technique uses the subjective logic (SL) operators to analyze opinion digraphs,
TNA-SL remains our term of choice for the modified strategy. The majority of TNA-SL behavior
(in either case) is captured by the SL-operators, not the method by which they are applied. Thus,
we see foresee no serious conflict arising from our redundant terminology. In situations where a
significant difference is foreseen between our approach and the original, note will be made.

EVALUATION METRICS

The primary thrust of our simulator is to compare RA effectiveness. Below, we define a succinct
metric for this purpose. However, the framework affords us other assessment opportunities. In
particular, algorithm efficiency can be examined and speed-up strategies tested.

Effectiveness Metric

When comparing the effectiveness of RM simulations it is helpful to have a single evaluation
metric, which we define as:

 Effective RM systems do not clean-up networks; they only provide accurate trust
information. Such a system will not only help good users find good providers, it will succeed in

helping malicious users find bad providers. However, we do not care about the success of
malicious users so our objective function is based solely on the good user success rate.

Simulation Efficiency

Through examination of simulation run times one can gain insight into the efficiency/scalability
of the implemented RAs. Timings of simulations run over realistic data are arguably more useful
than the asymptotic complexity analysis found in the papers describing these systems.
Additionally, speed-up strategies can be developed and their effectiveness can be validated. Such
strategies have been given considerable attention in our simulator development because
inefficient algorithms create inefficient simulations. We now describe why efficiency is a
particularly acute problem and introduce a general-purpose strategy for improving it.
 For a network of n users, there are n2 user-to-user relationships, each with their own trust
value. Since RAs often exploit transitive trust, there are a multitude of network paths to explore,
often implemented as matrix multiplication. Examining long transitive chains takes many
multiplications and trust is recomputed after every transaction. As a result, some reputation
systems, especially expressive and theoretic ones, pose a large computational burden. This
inhibits experimentation with large networks and high transaction counts.
 EigenTrust is quite scalable because of its globally convergent values via vector-matrix
multiply. TNA-SL (our version), with its user-centric trust values and matrix-matrix
multiplication is not so fortunate8. For example, the 50-user 50k transaction traces like those
analyzed herein take ≈ 2 seconds to run under EigenTrust but 2.5 minutes under TNA-SL. An
increase to 100 users takes 5 seconds for EigenTrust and over 10 minutes for TNA-SL.
 Our framework’s scalability is disadvantaged in two ways. First, trust computation is often
distributed among nodes, a notion our centralized simulator cannot take advantage of. Second,
our network’s fully-connected nature may lead to an unrealistic explosion of network paths.
 While burdensome, these difficulties pale in comparison to the efficiency hurdles faced in
actual networks. Consider that a popular P2P application might have hundreds-of-thousands of
users. Exhaustive trust analysis in such situations is impossible and approximation techniques
must be used. For example, a RA may consider only feedbacks from a random subset of users,
utilize feedbacks from only the most experienced users, or limit path search-depth. The first
approach is one tested and advocated in the work of Papaioannou and Stamoulis (2004).
 Fortunately, as Kamvar et al. (2003) suggests and our own work confirms, simulations scale
intuitively. That is, an x user simulation with y malicious peers produces statistical ratios and
evaluation metrics comparable to that of a 2x user simulation with 2y malicious peers. This fact,
combined with our (simulator-based) heuristic efficiency improvements introduced below, allow
the production of meaningful results in a reasonable time frame.

Heuristically Improving Simulation Efficiency

By taking advantage of the static nature of traces and the preponderance of consistent behavior in
simulations, efficiency improvements can be made while maintaining near-correctness. First,
consider that user models are constant during a run, i.e., users behave in consistent ways.
Second, as a test run progresses each successive feedback has less influence because it is being

considered along with a growing body of previous feedbacks. Over time the network becomes
‘solved’ and trust values change very little. This allows one to use slightly aged trust-values with
minimal consequence and not have to recompute trust after every transaction.
 As a preliminary experiment, we decided to confirm that the trust networks we generate are
indeed solvable. To do so, we generated 50-user, 50k transaction traces with between 0-100%
purely malicious users. We then ran the traces (using TNA-SL) and recomputed trust after every
cycle for the first n = {0, 250, 1k, 2.5k, 5k, 50k} cycles. After that point, transactions were
executed until all 50k were complete, but the persistent (aged) trust values were used for source
selection. The trials where n = 50k act as a control and define correctness, since trust is always
recomputed in that case. Figure 3 displays how lower n values fared9.

Figure 3: Trust convergence rate (TNA-SL)

 By approximately n = 2.5k, and certainly by n = 5k, the margin of error is < 1% at all data
points. Therefore, about 90% of the trust computations performed are unnecessary on runs of this
nature, which were designed to difficult to ‘solve.’ In practice, only computing trust up to some
point is not the best idea, instead, an evaluation interval should be used, which we term skip.
Initially skip:=1 and every time transac_num % skip == 0, trust is recomputed and a
snapshot of the trust values taken. At each recalculation, the new trust values are compared
against those of the previous snapshot. If each entry deviates less than some ε, then skip *=
2, else skip /=2. Bounding skip to [1...32] helps maintain correctness.
 Tests have shown that at the beginning of a run the value of skip fluctuates and remains
low, but quickly saturates leading to a speedup of ≈ 32×. The adaptive nature of this technique
should make it conducive for use with any algorithm. Furthermore, this adaptivity would permit
speedups in more dynamic systems, perhaps even those present in real-life.
 Indeed, the described strategy is an approximation. Those trust (re-)calculations skipped over
may have changed the relative trust ordering, and thus source selection, and the resulting metric.
Our tests have found this gap to be minimal. Since correctness is not guaranteed, however, the
performance graphs presented later in this chapter were not generated using the described
heuristic. The approximation, however, was helpful in the rapid prototyping of test runs.
 More subtle speed-up strategies are often algorithm-specific. Lots of persistent storage is
used to minimize redundant calculations at each call. For matrix-multiplication strategies it is

important to do the minimal amount of multiplies necessary to reach convergence/saturation. The
static approach of simply doing x multiplies each time is unacceptable because x must be high
enough to buffer for worst-case behavior. In the EigenTrust case, multiplication ceases once
convergence is indicated via a precision ε on the global vector. For (our version of) TNA-SL, if a
multiplication makes no update to the maximal matrix, no more are needed.

TEST RUNS AND OBSERVATIONS

Using simulator runs we will now exemplify behavioral aspects of RAs. This gives us an
opportunity not only to test RAs but our simulator itself. We begin by examining how RAs
manage adversarial user models, like the purely malicious one, and then look at how varying
network conditions, i.e., bandwidth and interaction density, affect the evaluation metric.

Simple Test Runs

The simplest test is how a RA handles malicious providers; those that own and acquire invalid
files but give honest feedback. Figure 4 demonstrates how trivially managed such a system is.

Figure 4: RAs vs. Malicious Providers

 The graph was produced from 50-user, 50k transaction traces with no pre-trusted peers, and
infinite bandwidth. The y-axis corresponds to the evaluation metric of the previous section. The
x-axis represents the number of malicious users present, i.e., a data point with 72% malicious
providers has (0.72*50) = 36 malicious providers, and the remaining (50-36) = 14 users are good
ones. The data sets correspond to the different reputation algorithms being evaluated.
 As shown, NONE always regresses in linear fashion. As expected, all RAs converge to a
metric near 0% when the network is completely saturated with bad users, since they remove
good files from their libraries. Any RA with a metric scoring above control line NONE is
considered a success. Malicious providers do not present a serious threat to a network because
they are honest about their poor intentions. Thus, the algorithm success demonstrated in Figure 4
is not seen as significant, but rather, a sanity-check on implementation correctness.

 Figure 5 shows a more interesting graph where invalid files and feedback dishonesty are
present. It is parameterized just as Figure 4, except that purely malicious users now replace
malicious providers. While TNA-SL is still very successful, EigenTrust is less impressive,
narrowly improving upon the control metric. Why does EigenTrust perform so poorly?

Figure 5: RAs vs. Purely Malicious users

 As we shall see, the notion of pre-trusted peers corrects this EigenTrust deficiency. For now,
we concentrate on the simpler case where they are not included. So then, why does TNA-SL so
dramatically outperform EigenTrust in this example? TNA-SL weighs local (i.e., direct)
interaction history more heavily than transitive feedback data due to the nature of the discount
operator. In contrast, EigenTrust computes a global ‘average.’ From a good user's perspective,
the average global view of a network overrun with malice is probably an inaccurate one. In such
cases, the only person you should trust is yourself, and TNA-SL encodes precisely this notion by
using user-centric trust values. When available and in quantity, direct interaction data is more
valuable than that received transitively because it is known to be accurate.
 EigenTrust has the capability to weigh local information more heavily. By performing a
weighted average of the normalized (pre-multiplication) local vector with the converged (post-
multiplication) global trust vector, the local:global preference can be shifted. This average is a
less powerful notion than that TNA-SL provides and is not a feature we examine in this chapter.
 Another surprising aspect of Figure 5 is that EigenTrust still provides improvements over
NONE even when the network is overwhelmed by malicious users. It is unintuitive a super-
majority of bad users can't manipulate the system for their benefit. Recall these users are in non-
organized casual cooperation. Purely malicious users lie, making bad guys appear good, and
good guys appear bad. With lots of bad guys the whole notion of good and bad becomes
reversed. Bad guys trying to download from other bad guys end up downloading from good users
because misinformation is so plentiful. As we shall see, malicious users need additional
capabilities for their misbehavior to have a serious effect. Fortunately, the simplistic approach of
simulator permits the analysis and description of such second and third order behaviors.

Pre-Trusted Peers

We now introduce pre-trusted peers into our simulations. Figure 6 presents just such a test run,
parameterized precisely as those above except with n pre-trusted users where n in {0, 5}. Note
when n = 0 the data is identical to that presented in Figure 5. For implementation purposes, pre-
trusted peers are a subset of good users. For EigenTrust, the inclusion of pre-trusted peers
produces a staggering improvement. Pre-trust makes global aggregation less naïve and permits
other subtle improvements discussed by Kamvar et al. (2003). For example, new users with no
network experience place all of their initial trust in the pre-trusted user set.

Figure 6: Introducing pre-trusted nodes

 For TNA-SL the gain is minimal, however, there is little room to improve. When n = 5, both
algorithms perform near-ideally, that is, the evaluation metrics are the highest attainable when
one considers valid file copies may be scarce in malice networks. Notice in Figure 6 that the
evaluation metric begins a rapid decline for the high performing algorithms, i.e., datasets
EIGEN-5 and TNA-SL-5, when the network has 66% or more purely malicious users. These
low metrics are a side effect of our constraint that transactions must be completed, when
possible. Thus, good users are likely aware that they are about to download from a poor user, but
simply have no better alternative. Enabling users to ‘decline’ a transaction after examination of
trust values would present a myriad of challenges. Not only would this strain the simulator's
static nature, but trust values would need an absolute interpretation (EigenTrust's are relative).

Reduced Interaction Density

The ‘near-ideal’ performance exhibited to this point is unsatisfactory. More interesting are the
parameterizations that challenge the RAs. Let us begin with interaction density. The 50-user, 50k
transaction traces we have been examining produce ≈ 20 interactions between each user pair; an
abundance of direct experience. While such densities do allow us to study convergent algorithm
behavior, actual P2P networks are far sparser. A reduced transaction count will simulate a sparse
network, and the less complete information should test the transitive functionality of the RAs.

Figure 7: RAs in a sparse network

 Figure 7 is set up just as Figure 6 except there are only 500 transactions, leading to ≈ (1/5)
interactions between each user pair. The graph shows that pre-trust is particularly important
when data is not plentiful. Without it, both algorithms perform comparably to the control line.
 It is possible for EigenTrust to outperform TNA-SL, as Figure 7 shows at many data points.
In general, however, TNA-SL’s expressiveness (e.g., the ability to quantify negative trust)
compared to EigenTrust results in higher evaluation metrics while sacrificing efficiency.

Tightening Bandwidth Constraints

To this point, we have only examined parameterizations with unlimited bandwidth. Just as with
plentiful interaction densities, this condition is unrealistically beneficial to the RA being studied.
When bandwidth constraints are enforced, users may be unable to source-select their most
satisfactory choice. We demonstrate that bandwidth limitations are necessary via Figure 8; the
cumulative distribution function (CDF) of uploads per the percentage of network participants.

Figure 8: CDF of upload frequency

 Figure 8 is parameterized with 50 good users and unlimited bandwidth over 50k transactions.
As the graph shows, during EigenTrust runs just 20% of users account for 90% of all uploads;
evidence that a subset of users become identified as ‘most trusted.’ While good for trust metrics
this is clearly not the best utilization of network bandwidth. More interesting is the graph of
Figure 9, showing how identical traces fared under varying upload bandwidth availability.

Figure 9: RAs under varying bandwidth constraints

 As Figure 9 shows, tight bandwidth inhibits RA performance. The percentages associated
with data sets are indicative of the bandwidth utilization, i.e., dataset ‘100%-BW’ means the
trace could be run with no incomplete-able transactions if-and-only-if every user utilized the full
allotment (100%) of bandwidth given to them. Tighter bandwidth constraints make RA
performance tend towards the control line (NONE). Just as bandwidth may force good users to
select less trusted providers, malicious users may have to select more trusted ones. Bandwidth,
important for realism, is largely uninteresting from a trust perspective; only acting as a scalar on

the metric gap between systems. Bandwidth constraints also produce incomplete-able
transactions from which no useful statistics can be derived. For these reasons, we have -- and
will continue to -- present scenarios with unlimited bandwidth.

EMPOWERING MALICIOUS USERS

To this point test runs have shown impressive RA performance. However, the fact that networks
with upwards of 75% malicious users can still be managed may suggest our malicious user
models are not sufficiently powerful. Rather than being an endorsement of RAs our simulator
should strive to find their breaking points, even if by unrealistic means.

Assumptions Benefiting Bad Users

Starting on the complementary end, several of our assumptions are beneficial to malicious users.
First, our simulator has a ‘closed world.’ Users do not come and go from the network; all
participants are available to participate in transactions from the outset. In a more realistic setting,
networks would be built by well-intentioned users and some basis of trust would be established
between good users before malicious ones appeared. Furthermore, it is unlikely a significant
number of bad users will enter the network at a single time. Therefore the RA would be able to
‘cast aside’ malicious users as they are identified and not have to deal with the cumulative effect
of simultaneous arrival. Secondly, as discussed previously, complete-able transactions must
complete. Thus, when limited file copies exist or in tight bandwidth situations, users further
down the relative ordering (i.e., less trustworthy) will be given the chance to disseminate files.

Distributed Schema

On the other hand, some of our assumptions inhibit malicious users from gaining an advantage.
First, RAs are usually implemented in a distributed setting and thus interaction and trust value
storage are distributed, as well. It is insecure to let users store and report their own data. In
practice, score management systems, like TrustMe (Singh & Liu, 2003) or that of Yang, Kamvar,
and Garcia-molina (2003) are used. For security reasons, data is stored redundantly. When
discrepancies arise, a vote determines how to proceed. Thus, a large and cooperative group of
malicious users can agree on dishonest values and subvert a reputation framework entirely.
 Our simulator uses a centralized feedback-store and trust service, and therefore cannot fall
prey to such subversion. This fact may unfairly hamper malicious user efforts. However, a
centralized approach is simple and efficient for simulation purposes. Also, readers must realize
that an RA and the distribution scheme it employs are two separate entities. While the
EigenTrust paper uses MOTHERS (Yang et al., 2003) for secure distribution, other score
managers may work just as well. One should be careful not to apply the deficiencies of
distribution strategies to reputation management algorithms.
 A centralized reputation database does have a severe weakness; everyone has a consistent
view of the network. Intuitively, malicious users want to lie to good users but provide their

malicious colleagues good information. We now describe how such differing perspectives can be
realized without having to implement score managers or distribution schema.

Empowering Isolated Malicious Users

To exemplify our architecture’s weakness, let us examine the case of a single, isolated, purely
malicious user, u. Suppose TNA-SL, with its preference for direct experience, is the RA being
used. User u receives a valid file from a good user, v, and dishonestly submits negative feedback.
Now, the next time user u queries and needs to compute trust he will go the feedback database
and aggregate over feedback(s), including those that he/she previously submitted. In particular,
trust(u->v) may be low as it is characterized by one or more negative feedbacks. User u,
being malicious, is then likely to use v as a source. However, v is actually a good user, u gets a
good file, u has less bad files, and the network is slightly better on the whole. Our (static) source
selection criteria (Table 2) operate on the assumption that stored interactions are honest –
behavioral patterns become uncharacteristic when this is not the case.
 Luckily, this it is not difficult to correct. We previously assumed the feedback DB and trust
computation were centralized. Relaxing this to allow distributed trust computation gives
malicious users more power. Now, we assume a user who wants to make a trust inquiry will
export a copy of the centralized feedback DB to his/her own machine and perform trust
computation locally. Further, in addition to submitting (perhaps dishonest) feedbacks to the
global-DB, users will also locally store a vector of completely honest interaction history.
 After the centralized feedback DB has been imported, and before trust computation is done,
users will override ‘their’ vector in the global matrix with their local honest one. For example, in
Figure 10, we assume user u (ID=0) is computing trust. Therein, A is the (summarized) feedback
DB, w is u’s local honest vector, and A’ is subsequently given to the RA to compute trust10.

Figure 10: Overwriting global feedback data

 Test runs have demonstrated this benefits malicious users by the smallest of margins. This is
intuitive: The local vectors of good users are identical to those in the global-DB. Good users
compute trust and source-select precisely as before. Malicious users compute trust differently,
but the evaluation metric does not concern them. For malicious users to deteriorate the
evaluation metric, they must skew the opinions of good users. Enter the malicious collective.

Empowering Malicious Collectives

A malicious collective is a set of nodes cooperating to increase the number of invalid files good
users receive. Assume collective members are aware of all other participating members. Now,
malicious users do not just use their honest interaction vector for local trust computation, they
also broadcast it to others in the collective so they may gain a more accurate network view.
 This capability alone is insufficient for a malicious collective to deliver invalid files. Imagine
a network has a set of good users and a group of purely malicious ones. Simulation shows the
two groups become disjoint subgraphs. Good users trade with other good users, with great
success, and because of the enhanced capability, bad users become really good at finding bad
files. Still, interaction rarely crosses this boundary, as is necessary for the metric to decrease.
 For a malicious collective to succeed its members need to have well-defined and coordinated
roles. We now describe one such strategy. Suppose a network has a set of good users, G, and
malicious collective, M, which consists of a set of feedback malicious users, FM, and a set of
purely malicious users, PM. The nodes of FM distribute good files and therefore trust(G-
>FM) is high. FM members are also liars so their global vectors indicate trust(FM->PM)is
high. Now, from a transitive perspective trust(G->FM->PM) is high, so in the absence of
contrary direct experience of the form trust(G->PM), good users are likely to obtain bad files
in this scenario, which we term the malicious gateway strategy.
 Simulation confirms we have alas given malicious users sufficient power to subvert a
reputation algorithm. Figure 11, implementing the malicious gateway strategy, shows EigenTrust
(w/o pre-trust) is particularly vulnerable to this approach. The addition of pre-trusted peers
corrects this deficiency (by-in-large) and seems to suggest that networks implementing well-
chosen pre-trusted peers are robust to even collective attacks.

Figure 11: Simulating the malicious gateway strategy

 Having demonstrated our simulator has sufficient power to model a group of cooperating
malicious users overtaking a network -- albeit one managed by a slightly naïve global average
algorithm -- our examination concludes. We leave the invention, implementation, and testing of
other collective strategies as an exercise for the reader. Our own attempts have shown this task to
be a difficult one. When confined to only algorithm-based attacks, (i.e., not attacking feedback
mechanisms or distribution strategies) RAs appear remarkably robust.

CONCLUSIONS

Emerging decentralized topologies offer benefits over their centralized counterparts. However, to
take advantage of these, reputation management needs used to limit corruption and malicious
behavior. Though many such RM systems exist, prior to our proposal of one in this chapter, there
was no convenient means to objectively compare them or verify authors' claims.
 Herein, we reported on our framework’s design decisions. First, we explained static network
trace generation. Particular attention was given to user initialization; utilizing two behavioral
dimensions – clean-up and feedback-honesty. Next, we demonstrated how traces are simulated
with bandwidth, trust computation, and source selection among the most dynamic aspects.
 New reputation algorithms may be easily interfaced into our framework. Two in particular
(EigenTrust and a modified TNA-SL) were discussed and have been implemented. These RAs
provided us the opportunity to discuss the implementation details, efficiency hurdles, and
behavioral qualities that characterize many systems. Example analyses increased our
understanding of existing RAs and helped us refine malicious user strategies.
 These test simulations were an endorsement of the current state of RAs. Malicious
collectives, even large ones, were unable to subvert the robust forms of either algorithm. Further,
in the vast majority of parameterizations, the systems enforced near ideal behavior. Though we
did not intend this study to be an endorsement of the current methodology, it ended up being just
that, as we encountered significant challenges in deteriorating algorithm performance.

Future Work

Though RA analysis with the simulator has been beneficial, improvements could make it an even
more powerful tool. Though it was our intention to simulate simplified networks, some of our
departures from realism may be too significant. First, our ‘closed world’ approach may need re-
thinking. Allowing users to enter and exit the network, change user models mid-trace (Srivatsa et
al., 2005), and insert new files into the network are all future considerations. While possible,
such notions strain the framework’s static nature11. Similarly, our notion of time needs enhanced.
 Second, network connectivity/topology needs examined. In our simulator, we assume
everyone trades with everyone else in the network. Limiting connectivity limits direct
experience, which in turn, tests transitive trust propagation. Cliques may be one solution to the
problem, i.e., genres of files. One should consult the work of Saroiu, Gummandi, and Gribble
(2002) to learn about such properties in actual P2P networks.
 Third, feedback mechanisms need to be refined. It is clear that the receiver (client) of a file
(service) should enter feedback regarding the provider (server). Entry of additional feedbacks
may allow for more powerful methods of trust computation. Suppose user A downloaded a bad
file from B, because users C and D suggested that B was a good choice. In addition to the
obvious feedback(A->B, NEG), A may also want to submit feedbacks indicating that B and
C were poor referrers. With entries of this style, one can determine referral trust of users.
Properly implemented, this could defend against the malicious gateway strategy. Similarly, trust
in individual files may be calculated via context and feedback filtering. Such analysis can likely
be performed to infinite specificity, but less relevant feedback will exist as scope narrows.
Adaptive approaches will need to be developed to consolidate values from varying granularities.

 Similarly, we need to develop methods to verify that whoever is entering feedback in a DB is
justified in doing so. Perhaps a token issued at service completion will need to be presented at
feedback submittal in order to verify this fact. Still, this does not entirely prevent ballot stuffing
attacks. When the costs and risks of an exchange are high, cost-benefit analyses and decision
meta-policies might need to be implemented.
 Fifth, we have demonstrated that pre-trusted peers can be critical to the effectiveness of a
RA. Research needs focused on how such users should be selected and how varying quantities
affect algorithm metrics. From the malicious perspective, it would be interesting to examine how
pre-trust can be exploited. For example, malicious users may choose to always deliver valid files
to pre-trusted users (if they can identify them), dramatically boosting global opinion. Lastly, out-
of-band manipulation of a pre-trusted peer, i.e. a botnet takeover, could prove significant.
 Sixth, additional RAs need interfaced into our framework, allowing us to confirm the
applicability of our design. Furthermore, small, algorithm-specific, enhancements might need
made. For example, EigenTrust and TNA-SL both encode the notion of pre-trust. What about
algorithms that cannot take advantage of pre-trust, but are dependent on other properties? For
example, an RA may want to store feedback timestamps and treat older entries as less relevant.
Such properties should be included, so long as they are perceived as being realistic.
 Finally, we would like to note the above identification of shortcomings does not invalidate
the significance of our simulation results or the usefulness of our current implementation. Rather,
they are a series of improvements that should be simple additions to our modular design.

Source Availability

The evaluation framework described herein has been implemented in both C and Java; their
functionality is equivalent. The Java code is fully documented and intuitive -- it is the suggested
viewing for anyone with casual interest. The C code is not as straightforward but is significantly
quicker. The source code and supporting documents are available at
http://rtg.cis.upenn.edu/qtm/

REFERENCES

Blaze, M., Feigenbaum, J., & Lacy, J. (1996). Decentralized Trust Management. In Proceedings

of the 1996 IEEE Symposium on Security and Privacy (pp. 164-173). IEEE Computer
Society Press.

Breslau, L., Cao, P., Fan, L., Phillips, G., & Shenker, S. (1999). Web Caching and Zipf-like

Distributions: Evidence and Implications. In Proceedings of INFOCOM ’99: Eighteenth
Annual Conference of the IEEE Computer and Communications Societies (pp. 126-134).

Douceur, J.R., & Donath J.S. (2002). The Sybil Attack. In First IPTPS (pp. 251-260).

Hoffman, K., Zage, D., & Nita-Rotaru, C. (2008). A Survey of Attack and Defense Techniques
 for Reputation Systems. To appear in ACM Computing Surveys.

Jøsang, A. (2001). A Logic for Uncertain Probabilities. International Journal of Uncertainty,
 Fuzziness, and Knowledge Based Systems, 9(3) (pp. 279-311).

Jøsang, A., Hayward, R., & Pope, S. (2006). Trust Network Analysis with Subjective Logic. In
 Proceedings of the 29th Australasian Computer Science Conference.

Kamvar, S.D., Schlosser, M.T., & Garcia-molina H. (2003). The EigenTrust Algorithm for

Reputation Management in P2P Networks. In Proceedings of the Twelfth International
World Wide Web Conference (pp. 640-651). ACM Press.

Li, H., & Singhai, M. (2007). Trust Management in Distributed Systems. IEEE Computer, 40(2).

Papaioannou, T.G., & Stamoulis, G.D. (2004). Effective Use of Reputation in Peer-to-Peer

Environments. In Fourth International Scientific Workshop on Global and Peer-to-Peer
Computing (pp. 259-268).

Resnick, P., & Zeckhauser, R. (2001). Trust Among Strangers in Internet Transactions:

Empirical Analysis of eBay’s Reputation System. Working Paper for NBER Workshop on
Empirical Studies of Electronic Commerce.

Saroiu, S., Gummadi, P.K., & Gribble, S.D. (2002). A Measurement Study of Peer-to-Peer File
 Sharing Systems. In Proceedings of Multimedia Computing and Networking.

Schlosser, M.T., Condie, T.E., & Kamvar, S.D. (2003). Simulating a File-Sharing P2P Network.
 In Proceedings of the Workshop on Semantics in Peer-to-Peer and Grid Computing.

Singh, A., & Liu, L. (2003). TrustMe: Anonymous Management of Trust Relationships in
 Decentralized P2P Systems. In Peer-to-Peer Computing 2003 (pp. 142-149).

Srivatsa, M., Xiong, L., & Liu L. (2005). TrustGuard: Countering Vulnerabilities in Reputation

Management for Decentralized Overlay Networks. In Proceedings of the International World
Wide Web Conference.

Valdes, J., Tarjan, R.E., & Lawler, E.L. (1979). The Recognition of Series Parallel Digraphs. In

Proceedings of the 11th Annual ACM Symposium on Theory of Computing (pp. 1-12).

West, A.G., Aviv, A.J., Chang J., Prabhu, V.S., Blaze M., Kannan, S., Lee, I., Smith, J.M., &

Sokolsky O. (2009). QuanTM: A Quantified Trust Management System. In EUROSEC 2009,
pp. 28-35. Nuremberg, Germany. March 2009.

Yang, B., Kamvar, S.D., & Garcia-molina, H. (2003). Secure Score Management for P2P
 Systems. Technical report, Stanford University.

Zhang, Y., Lin, K.J., & Klefstad, R. (2006). DIRECT: A Robust Distributed Broker Framework

for Trust and Reputation Management. In Proceedings of the 8th IEEE Conference on E-
Commerce Technology.

Zhang, Q., Yu, T., & Irwin, K. (2004). A Classification Scheme for Trust Functions in
 Reputation-Based Trust Management. In Proceedings of the ISWC Workshop on Trust,
 Security, and Reputation on the Semantic Web.

Zipf, G.K. (1949). Human Behavior and the Principle of Least Effort. Addison-Wesley Press,
 Reading, MA.

ADDITIONAL READING

Aberer, K., & Despotovic, Z. (2001). Managing Trust in a Peer-2-Peer Information System. In
 Proceedings of the 9th Intl. Conference on Information and Knowledge Management.

Aringhieri, R., Damiani, E., De, S., Vimercati, C., Paraboschi, S., & Samarati, P. (2006). Fuzzy
 Techniques for Trust and Reputation Management in Anonymous Peer-to-Peer Systems. In
 Journal of the American Society for Information Science and Technology, (57) (pp.528-537).

Buchegger, S., & Boudec, J.V. (2004). A Robust Reputation System for Peer-to-Peer and Mobile
 Ad-hoc Networks. In Proceedings of P2PEcon 2004.

Cornelli, F., Damiani, E, Capitani, S., & Paraboschi, S. (2002). Choosing Reputable Servants in
 a P2P Network. In Proceedings of the 11th World Wide Web Conference (pp. 376-386).

Garg, A., & Battiti, R. (2005). WikiRep: Digital Reputations in Virtual Communities. Technical
 Report, University of Trento (Italy).

Grandison, T., & Sloman, M. (2009). A Survey of Trust in Internet Applications. In IEEE
 Communications Surveys and Tutorials 3(4) (pp. 2-16).

Gutscher, A., Heesen, J., & Siemoneit O. (2008). Possibilities and Limitations of Modeling Trust
 and Reptuation. In WSPI 2008.

Jøsang, A., Bhuiyan, T., Xu, Y., & Cox, C. (2008). Combining Trust and Reputation
 Management for Web-Based Services. In Proceedings of TrustBus2008 (pp. 69-75).

Jurca, R., & Faltings, B. (2003). An Incentive Compatible Reputation Mechanism. In
 Proceedings of the IEEE Conference on E-Commerce 2003 (pp. 285-293).

Kinateder, M. & Rothermel, K. (2003). Architecture and Algorithms for a Distributed Reputation
 System. In Proceedings of the 1st International Conference on Trust Management (pp. 1-16).

Lin, K., Lu, H., Yu, T., & Tai, C. (2005). A Reputation and Trust Management Broker
 Framework for Web Applications. In International Conference on e-Technology, e-
 Commerce, and e-Services (pp. 262-269). IEEE Press.

Marti, S., & Garcia-molina, H. (2006). Taxonomy of Trust: Categorizing P2P Reputation
 Systems. In Computer Networks, 50 (pp. 472-484).

Vu, L.H., Hauswirth, M., & Aberer, K. (2005). QoS-Based Service Selection and Ranking with
 Trust and Reputation Management. In Proceedings of the OTM Confederated International
 Conferences 2005, 3760 (pp. 446-483).

Xiong, L., & Liu, L. (2004). PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer
 Electronic Communities. In IEEE Transactions on Knowledge and Data Engineering (16).

∗ This research was supported in part by ONR MURI N00014-07-1-0907.
1 Systems in the reputation management domain are sometimes (erroneously, we believe) called
trust management systems. We prefer the term reputation management since trust management
was coined to describe policy-based access control. No matter what these systems are called, the
values computed by them are almost always called trust values. Further complicating the
terminology, so called quantitative trust management (QTM) systems have been developed,
selectively combining desirable TM/RM features (West et al., 2009).
2 We will use these terms interchangeably. Indeed, reputation manager is a convenient term
common in literature, but this is avoided as it would introduce acronymic confusion.
3 RM systems are by no means limited to binary feedback. Continuous variables or ordered sets
are also common. We use only positive/negative feedback because it interfaces well will the two
RM systems we discuss and it simplifies discussion.
4 The major challenge is not so much getting users to provide honest feedback, as it is getting
users to provide any feedback. Feedback submission is optional in almost all applications
implementing it. Our simulator makes the assumption that feedback is always provided.
5 To support this notion, our simulator allows a warm-up period to be specified, in which trust
relationships/values can stabilize before statistics begin to be tabulated.
6 Files are labeled numerically [1…NUM_FILES].
7 Efficient (linear-time) DSPG recognition is a rather complex topic. The casual reader may find
the earlier work of Valdes, Tarjan, and Lawler (1979) to be helpful.
8 Attempting to bring the DSPG approach to bear on a fully-connected, 50-user network is not
the wisest approach. Consider the fact 1.12×1015 paths would exist between each user pair.
9 All data points on the graphs herein are the average of 5+ simulations, where each simulation is
produced from a different trace, and each trace is generated using an identical parameterization
(aside from the random seed). This is an attempt to reduce variance and produce the most
characterizing plots possible. The speed-up heuristic was not used for graph generation.
10 Distributed trust computation complicates our speed-up heuristic. To adapt, every user would
need to store his/her own snapshots and skip values. This is not a feature we explore.
11 Such ‘strains’ on the static nature are not difficult to overcome, but they would massively
increase trace file size. Comparability must be preserved. For example, stating a user will be
present x% of the time, then letting this presence be determined randomly at runtime is
insufficient. Instead, every user entry-to/exit-from the network needs written to the trace.

