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Abstract

Animatedcharacters may exhibit several kinds of dy-
namic intelligencewhenperforming low-level navigation
(i.e., navigation on a local perceptual scale): They de-
cide amongdifferent modesof behavior, selectivelydis-
criminate entities in the world around them,perform ob-
stacleavoidance, etc. In this paper, we presenta hybrid
dynamicalsystemmodelof low-level navigation that ac-
countsfor the above-mentionedkinds of intelligence. In
so doing, the modelillustratesgeneral ideasabouthow a
hybrid systemsperspectivecaninfluenceandsimplifysuch
reactive/behavioral modelingfor multi-agent systems.In
addition, we directly employedour formal hybrid system
modelto generateanimationsthat illustrateour navigation
strategies.Overall, our resultssuggestthathierarchical hy-
brid systemsmayprovidea natural frameworkfor modeling
elementsof intelligentanimatedactors.

1 Intr oduction

Autonomousanimatedcharactersin computergames
andothervirtual worlds may possessseveral kinds of dy-
namicintelligenceto enablereasonable,realisticnavigation
behavior. As a motivatingexample,consideran intelligent
animatedactornavigating in its virtual world. In onecon-
text, it continuouslynavigatesneara long row of stationary
obstacleson its way to a target(goal)position. It startsout
uncomfortable,maintaininga largedistancebetweenitself
andtheobstacles.As time passes,however, it continuously
grows morecomfortable,which triggersdiscrete,instanta-
neouschangesto its navigation:moving faster;allowing it-
self to getcloserto obstacles;andgenerallybecomingmore
aggressive in its action. In addition,asit travels, it distin-
guishesamongdifferentkindsof obstaclesandamongdif-

ferentactorsaroundit. For instance,uponnearinga distant
target,it keepsasizabledistancebetweenitself andanodd-
lookingobstacle,but it passescloseto anearbyfriend.

Navigation systemssuchasthe oneunderlyingthe mo-
tivating exampleabove may be naturallydescribedashy-
brid dynamicalsystems(hybrid systems, for short),combi-
nationsof continuousanddiscretedynamics.(We discuss
hybrid systemsin moredetail in section2.2.) The actor’s
position(andcomfort level in its environment)maybede-
scribedby continuousdynamics;changesbetweendifferent
navigationstrategiesmaybedescribedby discretedynam-
ics.

In this paper, we presenta hybrid systemsapproachto
low-level navigation for animatedcharacters.It is a novel
applicationof theoreticalhybrid systemmodelsfrom both
thehybridsystems[3] andanimationperspectives.

As partof our presentation,we discussgeneralideasfor
employing a hybrid systemsframework to model the kind
of intelligent low-level navigation describedin the moti-
vating example. Considerthe diversity of dynamicintel-
ligencedemonstratedby the actor in that example. It au-
tonomouslyreachedits targetswithoutcolliding with obsta-
cles,respondingto moving obstaclesin realtime. It decided
to changenavigationbehavior in responseto adynamically
changingquantity, its comfort. It distinguishedamongen-
titiesaroundit, perhapsalteringits courseto reflectits sub-
jective impressionsof them. Notice further that all of this
intelligenceappliesto low-level navigation responses,on
theorderof localperceptionandimmediatespatio-temporal
concerns.Noneof it is high-level intelligence,on theorder
of globalpathfindingor complex deductive inference.

In additionto discussinggeneralideasfor modelingin-
telligent navigation, we alsopresenta specific,simpleex-
amplehybrid systemthat incorporatesthem. Our system
augmentstheagentsteeringandcrowd simulationapproach
of [15, 16], retainingits reactive, scalablenaturewhile ex-
pandingits behavioral intelligence.Our extensionsinclude



two that arehighlightedin the above motivating example:
selectiverepeller response, which allows the actor to dis-
tinguishamongvariousactorsandobstaclesaroundit; and
navigationmodeswitching, which allows the actor to au-
tonomouslyalterits generalnavigationbehavior in response
to its dynamicallychangingcomfort. The hybrid systems
framework is especiallywell suitedfor implementingnav-
igation modeswitching,which is inherentlybasedon the
interplayof continuousanddiscretedynamicsthat hybrid
systemmodelsexplicitly emphasize.

Weimplementedourexamplenavigationsystemasahy-
brid systemusingthegeneral-purposehybridsystemspeci-
ficationtool CHARON [7], concretelylinking theoreticalhy-
brid systemmodelswith practicalnavigation systems.In
addition,we directly employedour CHARON implementa-
tion to generateanimatedworlds of targets,obstacles,and
actorsthatdemonstrateintelligentnavigation.

2 Applying Hybrid SystemTheory to Multi-
agentAnimations

Systemswith bothcontinuousanddiscretedynamicsare
not new in animation,but it is not alwaysclearhow these
systemsrelateto well-understoodhybridsystemmodels.In
contrast,we make a strongconnectionto existing hybrid
systemtheoryby usingthehybridsystemtool CHARON [7]
to implementmulti-agentanimationsystems.Ourcombina-
tion of rigoroustheoreticalfoundations,dynamicalsystem-
orientedmodels,andtheparticularattributeswemodeldis-
tinguishesour approachfrom othersin behavioral anima-
tion andbehavioral robotics(e.g.,[22, 26, 28]).

We baseour animationsprimarily on theagentsteering
methodpresentedin [15]. Below, we review the tools we
employed to createour animationsanddiscussissuespar-
ticular to implementingananimationsystemin CHARON.

2.1 A Dynamical Systemfor Agent Steering

Therehavebeenmany approachesto modelingandguid-
ing the navigationbehavior of autonomousagents.Socio-
physical studiesof human pedestrianbehavior have re-
sulted in social force models[17], which are more mo-
tivated by modeling crowds than by enabling fast com-
putation of individuals’ navigation. For individual enti-
ties, logicist, artificial intelligence-basedtechniqueshave
beensuccessfullyusedfor cognitively empoweredagents
[21] and animatedactors[14]; perceptionand dynamics-
basedtechniques[10, 24, 28] areoftenmorereadilyableto
adaptto dynamicenvironments. Our particularapproach
to low-level agentnavigation is basedon the methodin
[15, 16], a scalable,adaptive approachto modelingmul-
tiple autonomousagentsin dynamicvirtual environments.

Like treatmentsof similar issuesin the field of behav-
ioral robotics[20, 22], we consideronly two-dimensional
motion, althoughthe mathematicalfoundationsfor three-
dimensionalnavigationalreadyexist [15].

Ouranimatedworldsconsistof threekindsof agents:ac-
tors, targetsthat representactors’goals,andobstaclesthat
actorsattemptto avoid. Theremaybemultiple actors,ob-
stacles,andtargetsin ananimationsystem.Further, obsta-
clesandtargetsmaybestaticand/ormoving. Thesecompo-
nentsprovide a generalconceptualpalettethatcanbeused
to expressa broadrangeof behaviors. For instance,anac-
tor performinga multi-parttaskcouldberepresentedby its
reachinga seriesof targetsin sequence,eachtarget corre-
spondingto a componentsubtask.

At thecoreof themathematicsunderlyingour animated
worlds arenon-linearattractor and repeller functionsthat
representthetargetsandobstacles(respectively) in thesys-
tem. Anothernon-linearsystemcombinestheir weighted
contributionsin calculatinganactor’s angularvelocity, dy-
namically adaptingto real-time changesin the environ-
ment. Together, thesenon-linearsystemsgeneratenatural-
seemingmotion, dynamicallychangingthe headingangle
of anactorin responseto its dynamicenvironment,guiding
it to avoid collisionswith obstaclesandotherundesirable
behaviors. The agentheadingangle

�
is computedby a

non-lineardynamicalsystemof theform:
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Thedynamicalfunctions
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aretheattractorand
repellerfunctionsfor the system,

�������
and
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are their

respective weightson the agent,and
%

is a noiseterm to
avoid localminimain thesystem.

This designreflectsthe adaptiveweightingof obstacles
andtargetsin the system:Entitiesexert differentamounts
of influenceon an actorat any given moment,andthe ex-
tentof thesecontributionsvariesin realtime. For example,
considera casewherean actor is very closeto obstacles
that block much of its direct path to its target (Figure 1).
In suchsituations,the actor shouldtemporarilydisregard
thetargetsothat it won’t bedrawn into collisionswith the
obstacles.Later, whenit is in lessimminentdangerof col-
lision, theactorshouldonceagainconsiderthetarget. The
adaptive weightingsystemcapturessuchintuitions. In ex-
tremecontextsliketheonejustdescribed,

�������
goesto zero.

Similarly, in contextswhereanactorshouldconsideronly a
target(e.g.,wheretherearenonearbyobstacles),

� �#� �
goes

to zero.In non-extremecases,theweightson obstaclesand
targetsarenon-zero,and they vary smoothlyover time to
reflect the changingrelative positionsof actors,obstacles,
andtargets.

The weights themselves are determinedby computing
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Figure 1. Two situations distinguished by
adaptive weighting. On the left, the actor
(A) should consider both the obstac le (OB)
and the target (T) in determining its cour se.
On the right, the actor should no long er
consider the target; it should focus onl y on
avoiding the obstac les. Our dynamical sys-
tem for agent steering automaticall y distin-
guishes the two cases, changing the actor’ s
behavior as appr opriate .

thefixedpointsof thefollowing non-linearsystem:( �� ����� �*)	+�� ����� �-,/.0�21�����  .435+ 1 � ����� �61�#� � �7%�� ���8� ��) 1 � �#� � �-,/.0�61���8�  .03 1 +�� �#� � �21����� �7% (2)

The
)

and
3

parametersaretime-dependentfunctionsde-
signedto reflectconditionsfor the stability of the system.
They ensure,for instance,that

�������
is zero when the ac-

tor shouldbe temporarilydisregardinga target, that
� �#� �

is zerowhenthe actorshouldbe temporarilydisregarding
obstacles,etc. Many otherparametersarealsoconcealed
in the termspresentedabove, but a discussionof the full
mechanicsof the adaptive weightingsystemis beyond the
scopeof thispaper. Weconsiderindividualparametersonly
asneededin this paper;we refer readersto [15] for more
technicalinformation.

This is only an overview of onesignificantpart of the
agentsteeringsystem,but it gives a feel for the kind of
mathematicsinvolved. Further, it introducesthe role pa-
rametersplayin agentbehavior, anotionto whichwereturn
laterin this paper.

2.2 Hybrid Systemsand CHARON

Hybrid systemsoccurfrequentlyandnaturallyin many
contexts, andthey arestudiedby both computerscientists
and control theorists[1, 2]. Past domainsof application
for hybrid systemmodelsincludedescriptionsof biologi-
cal processes[6], air-traffic managementsystems[27], and
manufacturingsystems[25]. Froma general,intuitive per-

spective, any systemcharacterizedby discretetransitions
betweenmodesof continuouscontrolis a hybridsystem.

Thereareseveraldifferentformalmodelsfor hybridsys-
tems. Net-basedmodelssuchasConstraintNets [29], for
instance,havebeenacknowledgedin literatureoncognitive
agents.Wefocusin particularonautomata-theoreticmodels
suchashybrid automata[8, 12]. As a brief, non-technical
introductionto this perspective, we considera hybrid au-
tomatonas having: a set of discrete statescalled control
modes; a continuousstatespace(a subsetof 9/: for some%

); anddescriptionsof systemevolution, with constraints
bothon continuousevolutionwithin a controlmodeandon
discretetransitionsbetweencontrol modes.A stateof the
overall systemis a pair

�
control mode

�
continuousstate .

Researchand analysisof hybrid automataunderliesprac-
tical toolssuchasCHARON [7].

The architectureof a hybrid systemin CHARON is ex-
pressedashierarchical agents, a modelconceptuallysim-
ilar to hierarchicalhybrid automata. The key featuresof
CHARON are:

Hierar chy. The building block for describingthe system
architectureis anagentthatcommunicateswith its en-
vironmentvia sharedvariables. The building block
for describingflow of control insidean atomicagent
is a mode. A mode is basicallya hierarchicalstate
machine,i.e., it may have submodesand transitions
connectingthem. CHARON allows sharingof modes
sothatthesamemodedefinitioncanbeinstantiatedin
multiplecontexts.

Discreteupdates. In CHARON, discreteupdatesarespeci-
fiedby guardedactionslabelingtransitionsconnecting
the modes. Actions may call externally definedJava
functionsto performcomplex datamanipulations.

Continuousupdates. Someof the variablesin CHARON

can be declaredanalog, and they flow continuously
duringcontinuousupdatesthatmodelpassageof time.
Theevolutionof analogvariablescanbeconstrainedin
threeways: differential constraints(e.g.,by equations
suchas

�; �<�	� ; �-=  ), algebraic constraints(e.g.,by
equationssuchas > �@?A� ; �-=  ), and invariants (e.g.,� ; . > �CB*D

) that limit thealloweddurationsof flows.
Suchconstraintscanbe declaredat differentlevelsof
themodehierarchy.

Modularfeaturesof CHARON allow succinctandstructured
descriptionof complex systems.Amongotherbenefits,this
modularityprovidesa natural-seemingstructurefor devel-
opinganimationsystemswith multiple levelsof behavior.
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3 A Hybrid Systemfor Intelligent Low-Level
Navigation

We now presentan example navigation system that
demonstratesthe kinds of intelligence underlying some
low-level agentsteeringbehavior. It is a substantialexten-
sionof thesystemsummarizedin section2.1,but it retains
thedesirablequalitiesof its predecessor, includingrigorous
theoreticalfoundations,easyextensibility for higher-level
navigationapplications,andthescalabilityrequiredfor the
computationalburdensof multi-agentapplications.In par-
ticular, we emphasizetwo significantextensions:selective
repellerresponseandnavigationmodeswitching.

Not coincidentally, we presentour navigationsystemas
a hybrid dynamicalsystem. The hybrid systemsperspec-
tive bothmotivatedandsimplifiedour low-level navigation
modeling. In particular, it enabledus to formally specify
navigation modeswitchingin a rigorous,system-theoretic
framework.

3.1 SelectiveRepellerResponse

In typical low-level navigation examplesgeneratedby
the framework in [15], the “aggressiveness”of an actor is
held constant.(“Aggressiveness”refersto the willingness
of an actor to get closeto repellers—obstaclesandother
actors—in its environment.)Thus,actorsappliedthesame
notion of “personalspace”to otheractorsasto obstacles.
Further, theframework makesnodistinctionwithin classes.
Every obstacleis treatedthesameasevery other;animated
humanscouldnot recognizethat someobstacleswereless
noxiousthanothers(e.g.,flower bedsvs. trashcans).Sim-
ilarly, with respectto other actors,an actor could not get
closerto one(a friend) thananother(astranger).

For our system,we extend the previous framework to
allow an intelligent actor to respondselectivelyto the in-
dividual entitiesaroundit. Low-level navigation behavior
maythenreflectactors’subjective impressionsof elements
of theworld aroundthem.

In eachactor, thereis a parameterEGF in the framework
of [15] that encodesaggressiveness:Raising/lowering E�F
will increase/decreasetheeffect of a repelleron thatactor.
As a constant,EGF appliesequally to all repellers. To en-
ableselective repellerresponse,we insteadimplement E�F
asa function that returnsa value for eachrepeller. Thus,
in termsof aggressiveness,eachactorhasits own relation-
shipswith every repellerin that world; a lookup function
for E F encodesthis in astraightforwardway. Thisextension
enablestheselective responsesdescribedin themotivating
exampleat thebeginningof thispaper, in whichthemoving
actoropts to go closerto a stationaryactor, a friend, than
to a stationaryobstacle.It alsoenablesmorecomplex rela-
tionships.Indeed,thefunctionitself couldevolveovertime,

representingchangesin interpersonalclosenessin a virtual
world asit appliesto low-level navigation.For theexample
animationsin section4.2,however, our E F is astaticlookup
function.

3.2 Navigation Mode Switching

An intelligentanimatedactormightnot rely on thesame
dynamicalnavigationsystemfor its entirepath.Recall,for
instance,the motivating exampleat the beginning of this
paper. An actor might alter its basicnavigation behavior
basedon a variety of factors: increasedcomfort in its en-
vironment; awarenessthat it is amongfriends; or even a
simplerecognitionthatit no longerrequirescomplex obsta-
cleavoidanceto reachits goal.Following theframework in
[15], eachof thesebehaviorswouldbedescribedbyadiffer-
entdynamicalsystem.In our terminology, eachdynamical
systemessentiallydefinesa modeof navigation,andanac-
tor mightengagein navigationmodeswitchingasit follows
its course,“changingits mind” aboutappropriatelow-level
behavior muchasit might abouthigh-level behavior (e.g.,
globalpathplanning).

We anticipate,in particular, that suchchangescouldbe
real-timeresponsesto real-timechangesin the actor’s dy-
namicvirtual environment.This observationmotivatesour
utilizing a hybrid systemsframework for our navigation
model;in it, we areableto specifytransitionconditionsin-
dependentof pre-determinedspatio-temporallocations. If
werestrictedourselvesto transitionsonly atpre-determined
pointsin spaceor time,wewouldbeeffectivelyabandoning
thereal-timedynamicnatureof low-level navigation.

To enable the kind of real-time mode switching de-
scribedin our motivatingexample,we introducea variable
comfortintendedto representhow generallycomfortablean
actorfeelsin its currentlocalenvironment.In ourmodel,an
actor’s comfortvariesdynamicallyin real time, just like its
position.Therefore,we givea differentialequationform to
describetheevolutionof anactor’scomfort:

�H �*I�J
base

JK�K�	�
envML (3)

In (3), H is thevariablefor comfort,and
I�J

andbase
J

are
real-valuedparameters,bothconstantin a mode N but dif-
ferentin eachmode. Parameterbase

J
representsthe base

rateof changein that mode,the fundamentalway the ac-
tor’s comfortevolves.Parameter

I J
is a scalingfactor;for

our demonstrationsin section4.2 and on the supplemen-
tarywebsite[5], weusehighscalingfactorsin somemodes
to inducefastermodechanges.We further simplify equa-
tion (3) by choosinga straightforwardway to representthe
dynamicinfluenceof timeandtheworld onanactor’scom-
fort, makingit suchthat

�H doesnot dependon H . Thereis
norestrictiononhybridsystemsthatimposesthis,however,
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andour generalform canbe readily extendedto apply to
morethanjustour simpleexample.

An actor’scomfortis alsoinfluencedby its environment,
asrepresentedin equation(3) by thefunction

�	�
env . Func-

tion
�

could be a well definedfunction on a thoughtfully
designedset of arguments(world attributes, motivations,
etc.). We are more interestedin demonstratingthe flexi-
bility and generalityof the framework than in positing a
particularworld model,however, so we implement

�	�
env

asa randomnumbergenerator, boundedappropriatelyfor
ourvaluesof

I�J
andbase

J
.

In our model, comfort varies dynamically with time,
andan actor’s behavior changeswhenits comfort reaches
certain thresholdlevels. In particular, as an actor gets
morecomfortablein its environment,its velocity increases,
it tendsto becomemore aggressive (in the senseof sec-
tion 3.1) with respectto obstaclesandotheractorsaround
it, andit changesthewayits comfortevolves.Eachof these
new behavior systems—marked by new velocity, new E F
(eitherconstantor function-valuedE�F ), andnew parameters
for the equationgoverningthe evolution of H — is its own
navigationmode.Thus,navigationmodeswitchingencodes
thebehavior changesthatoccuruponcomfortreachingcer-
tain thresholds.Modetransitionsdependon comfort H , not
necessarilyonany pre-specifiedpointsin timeor space.For
example,transitionsmayoccuruponan actor’s reachinga
target,but they arenot constrainedto do so.

Transitionsin our modelmay alsodependon the trend
of theactor’s comfort (i.e.,

�H ) aswell asthe comfort value
itself. For instance,whendecidingwhich modeof obsta-
cle avoidantbehavior to employ for a particularportionof
a navigation,an actortakesa certaintransitionif its com-
fort level is very high or if comfort is moderatelyhigh but
trendinghigherat that time (i.e.,

�HPO�Q ). This exemplifies
how the hybrid systemsperspective encouragesa dynam-
ically orientedapproachto modelingsomekinds of real-
time decisionmaking. Mode transitiondecisionsmay be
madeindependentof timeandspace,dependentonboththe
zero’th-ordervalueof comfortandits first-ordertrend.

3.3 SystemAr chitecture

The kind of navigation model featuredin this paperis
naturallydescribedasa hybrid system:At its corearedis-
crete transitionsbetweencontinuousdynamicalsystems.
Thusmotivated,we implementedour examplenavigation
systemasa hierarchicalhybrid systemin CHARON. In this
section,we describeits architecture.

Figure2 shows the CHARON-agentarchitecturebehind
our modelof an animatedactorperforminglow-level nav-
igation. CHARON agents(asdiscussedin section2.2) are
representedas rectangles.Note the hierarchy: The navi-
gatingactor(i.e., the outermostagent)hasfive component

Velocity

Position

Sensor RRSS

TTUU

VVWW

XXYY

ZZ[[Objective Angle

obstacles

targets current
target

visible obstacles

Figure 2. The CHARON-agent-le vel architec-
ture of an actor perf orming low-level naviga-
tion. The outermost, darkest rectangle rep-
resents an actor . The rectangles contained
within it (Velocity, Angle, etc.) are sub-
agents.

sub-agents,includingPosition to determineits current
positionin a virtual world, Sensor to manageperception,
Objective to determineits next target,andAngle, the
dynamicsof which we have describedin this paper. Each
of theseCHARON sub-agentsmeritsindependenttreatment;
eachembodiesits own model of someaspectof naviga-
tion. For our implementation,we use a straightforward
Velocity sub-agent,supplyinga constantvelocity that
other sub-agents(e.g., Angle) can effectively changein
real time. Our underlyingarchitecture,however, allows for
amorecomplex treatmentof velocity.

Thenavigationmodeswitchingdescribedin section3.2
occursin CHARON sub-agentAngle, in which eachnavi-
gationmodeis straightforwardlyrepresentedasa CHARON

mode.(Section2.2discussestherolesof modesandagents
in CHARON.) As an actor becomesmore comfortable,it
switchesto anew navigationmode.Aggressivenessparam-
eter E F , velocity, andthe parametersof thedynamicalsys-
temof evolution for comfort(seeequation(3)) arechanged
to createa new notion of appropriateproximity to others
that reflectsthat actor’s new comfort. Comfort level may
alsodecreaseover the courseof a navigation, so our sys-
temalsoincludessomepossibleswitchesto lower-comfort
modes.A schematicdiagramof this straightforwardtransi-
tion systemis availableat thesupplementarywebsite[5].

We also include a mode-transitionsubsystemthat em-
phasizesselectiverepellerresponse.Whentheactorreaches
a certainpoint in its course,it entersthis subsystem.The
first navigation segment in this subsystemusesthe stan-
dard, non-selective obstacleavoidance. After reachinga
target, the actorthenswitchesinto oneof two otherpossi-
ble modes:a simple,linearcourse(no obstacleavoidance);
or selective obstacleavoidance.A schematicdiagramthat
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obstacle avoidance

selective
repeller
response

non-selective

straight
linear

navigation

navigation subsystem

\ ]_^a`cbedf\g]A^2h5ikj]_l2mnb
\ ]_oa`cbeif\g]Ao2h5dkj]_p2mnb

Figure 3. A subsystem that emphasiz es selec-
tive repeller response . This subsystem may
be embed ded in a larger navigation system
(and altered, as needed) as par t of the Angle
agent (see Figure 2). Note that transitions
depend on both H (comf or t) and

�H .

showstransitionconditionsfor thismode-switchingsubsys-
temis in Figure3.

Theparticularsystemdescribedin this sectionis merely
a simple example, intendedto straightforwardly illustrate
both our general ideas on low-level navigation and the
agent-orientedarchitecturesupportedby CHARON. Hier-
archicalCHARON agentscorrespondneatly to actorsand
other world entities, as well as to computationalsub-
componentsof actors that merit independenttreatment.
CHARON modescorrespondneatly to modesof behavior
for theseentities.By simultaneouslyintegratinganddistin-
guishingtheseconceptuallevels,hierarchicalhybridsystem
modelscan naturally representabstractionsthat we con-
siderwhendesigningintelligent navigation systems.Fur-
thermore,by adaptingthe systempresentedhere,a more
completedescriptionof world attributesandinfluences(see,
e.g.,[9, 11, 18, 23]) couldbeincorporatedinto anavigation
model.

4 Implementation Detailsand Experiments

4.1 Creating Animations fr om Hybrid System
Models

We implemented our example navigation systems
in CHARON using the key concepts noted in sec-
tion 2.2. Navigating actorsare implementedas CHARON

agents (see section 3.3). Modes are created to rep-
resent continuous behaviors; particular continuous dy-
namics (e.g., the non-linear system described in sec-
tion 2.1) are representedas differential or algebraic
constraints of a form such as diff q d(angle) =
AngleFunction(angle, L'L'L) r . If constraintsarenec-
essaryto limit the time in a particularmode,they arerep-
resentedas invariantssuchasinv q Cond && !Cond2
&& distance(x,y)<=distance(x,z) r . Guarded

transitionsbetweenmodesare presentedin a straightfor-
ward trans from Mode1 to Mode2 when Cond
do Effect syntax; when the guardCond is true, the
transitionis enabled,andif it is taken,statementEffect
is executedalongwith the system’s jump from Mode1 to
Mode2. In this way, theunderlyingcontinuousmathemat-
ics andrelationsbetweenmodesof behavior areexplicitly
representedin a CHARON program.Further, themodularity
of agent-orientedCHARON codemakes it easyto change
oneaspectof a systemwhile leaving othersintact. For ex-
ample,it is straightforwardto addnew modesto our navi-
gationmodeswitchingsystemswithout interferingwith any
of theexistingones.

CHARON also generatesnumericalsimulationsof hy-
brid systems,which we exploited in creatinganimations
from our formal systemspecifications. We simply sim-
ulated our navigation systemsin CHARON, then useda
small translationroutine (like a Perl script) to re-format
the outputof thosesimulations.The resultof this transla-
tion wasthenusedasinput to anoutsideapplication,which
createdanimationsin which characteractioncorresponded
to the frame-by-framedatageneratedby CHARON. Ex-
ceptfor smalldetails(e.g.,input format for theanimation-
generator),theprocedureis straightforward.Issuesof visu-
alization(rendering,charactermodels,cameramotion,etc.)
areindependentof CHARON andmay be performedusing
conventionalmethods.

Figuresin section4.2 containimagesfrom our anima-
tions. In our scenesandexperiments,actors(white mice)
navigate in a virtual world of targets (usually blocks of
cheese),obstacles(usuallytoysonemightfind onthefloor),
andotheractors. (CHARON-generatedanimations,includ-
ing thosefrom whichtheseFiguresweretaken,maybeseen
at thesupplementarywebsitefor this paper[5].)

4.2 Multi-agent Animations

Figures4–7 show framesfrom animationsthat demon-
strateour approachto intelligent low-level navigation. An
actor(white mouse),moving from the lower left to theup-
perright, beginsa navigationwith acomfortvalueof 0 and
a uniformly applied EGF value of 4. It startsout by mov-
ing arounda seriesof obstacles(notshown in this paper—
seesupplementarywebsite[5] for details),becomingmore
comfortableandmoreaggressive. Thecomfortand E�F (ag-
gression)valuesof the mouseareautonomouslyalteredin
accordwith the navigation modeswitchingsystemin sec-
tion 3.2;we, thedesignersof theanimation,do not impose
that thosevaluesbeat any particularlevel at any particular
place/timeotherthanat theonsetof thenavigation.

Eventually, thewhite mousearrivesat a positionwhere
it begins a simple two-segmenttask: get the first/nearest
block of cheese;then go get the more distantcheese.In
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Figure 4. An actor (white mouse , on right side
of image), having alread y swerved around a
stationar y obstac le (sneaker), now reacting to
avoid a moving obstac le (train). The lines in
the picture indicate the paths of the actor and
moving obstac le before and after their current
positions.

thefirst segment(Figure4), theactoravoidsa staticobsta-
cle (sneaker) anda moving obstacle(train) on the way to
thefirst targetcheese.This is a straightforwardapplication
of obstacleavoidancewithoutselectiverepellerresponseor
navigation modeswitching. The mouseappliesa uniformE F valueof 2.5 to bothobstacles.

Our protagonistmouseneednot engagein complex eva-
sive behavior in the secondsegment. It could reachthe
secondtarget simply by traveling in a straightline. Or, it
might insteadopt for selective repellerresponse,depend-
ing on its comfort level. In our experiment,we implement
this by having themouseenterthesubsystempresentedin
Figure3 whenit reachesthefirst target. Then,becausethe
mouse’scomfortis 6.1andtrendinghigher(its derivativeat
the time is approximately0.075),it optsfor straightlinear
navigation, asdisplayedin Figure5. As part of this nav-
igation modeswitch (seesection3.2), its E F value drops
to 0 —it no longereven considersobstacles,it just moves
straight—and its velocity risesfrom 0.3 to 0.5 units per
simulatedsecond.

If it weresomewhatlesscomfortablein its environment,
however, the actor might take a different course. For in-
stance,considerascenariowith two majordifferencesfrom
the one just described:The mouse’s comfort is only 4.1
when it makes a navigation modeswitch; and there is a
toy mouseasan obstaclein placeof the dinosaurin Fig-

Figure 5. The actor (white mouse), having
switc hed to simpler behavior . Its straight lin-
ear cour se takes it between two obstac les (a
flying saucer and a dinosaur).

ure5. Ourwhitemouseprotagonistmightnotbequitecom-
fortableenoughto decideto forgocomplex obstacleavoid-
ance,but it might be comfortableenoughto recognizethe
toy mouseon its right asnon-threatening(while the flying
sauceron its left remainstroubling). As a result, it would
dynamicallyadjust its courseto passasymmetricallybe-
tweentheobstacles,asshown in Figure6. Wemodelthisby
giving ourprotagonista E F valueof 1.2asappliedto thefly-
ing sauceranda E F valueof 0.6asappliedto thetoy mouse.
Thesechangespermitthewhitemouseto autonomouslyde-
termineits asymmetriccourse.

If it insteaddecidedto maintain its complex obstacle
avoidantbehavior, treatingall repellersthe same,it would
takea muchlongerpath,goingaroundbothobstacles.This
optionrepresentsakindof controlexperiment,astraightfor-
ward continuationof the standardobstacleavoidancethat
guidedit upuntil thefirst target;Figure7 isaframefrom the
resultinganimation,showing how much fartherthe white
mousegoesif it doesnot considernavigationmodeswitch-
ing or selective repellerresponse.(See[4] and[5] for fur-
therdiscussionandotheranimations.)

Thewebsite[5] of supplementarymaterialcontainsani-
mationsthatfurtherdemonstratemodeswitchingandselec-
tive repellerresponse,including onethat demonstratesall
the featuresin the systemdescribedin section3.3 of this
paper.
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Figure 6. Contrast with Figure 5: The actor
(white mouse), having switc hed to selective
repeller response . It stays far from the flying
saucer obstac le on its left, but it passes close
by the friendl y-looking obstac le (toy mouse)
on its right when navigating around it.

5 Notes on Practical Application of Hybrid
SystemTheory

In thissection,wepresenta few notesaboutpracticalis-
suesthatarosein our applicationof hybrid systemstheory.
Detaileddiscussionsof theseissuesextendwell beyondour
currentscope,but thesebrief treatmentsexposesomemoti-
vationandcontext for thework in this paper.

5.1 Verification

One primary motivation behindour work is the even-
tual developmentof animation-orientedformal verification
tools, e.g.,programsthatcouldmechanicallyverify aspects
of animationsystems. Such automatedverification pro-
gramscouldbepowerful designtools;animatorscouldrea-
sonaboutmorethanjust individual animations,they could
reasonaboutgeneralsystemsthatunderlieentireclassesof
animations.For example,onecouldformally proveproper-
tiesaboutwholeclassesof possiblecharactersin a particu-
lar virtual world.

Verificationis anextremelyactiveareaof researchin the
field of hybrid systems[2]. Our presentwork is, in part,
a first explorationof animationfrom a hybrid systemsper-
spective,creatinga connectionsothatmodallogicsfor hy-
brid systemsmightbeemployedto reasonaboutanimation.

Figure 7. Contrast with Figure 5: The actor ,
maintaining the comple x, obstac le-avoidant
behavior . It winds up taking a long er route to
the target.

(A discussionof thelogical frameworksestablishedfor rea-
soningabouthybridsystemsis beyondthescopeof thispa-
per; see[4] for details.) Indeed,relatedwork with robots
(e.g.,[19]) suggeststhata hybridsystemsframework could
be appropriatefor reasoningaboutanimationswithout un-
duedisregardfor thedynamicnatureof animationsystems.

5.2 Simulation

Our experienceshows that CHARON simulations of
formally specified animation systemsoften take longer
than simulationsof equivalent systemscodedoutsideof
CHARON [3]. Briefly, we believe the reasonsfor this are
largelyrelatedto thedifferencesin primarygoalsof thetwo
disciplines,hybrid systemsandanimation.Thehybrid sys-
temssideemphasizesanalysis;for CHARON, accuratesim-
ulation is essential,andslow simulationis acceptable.On
theanimationside,speedis moreimportantthanextremely
fineprecision.Thus,althoughweknow thatouragentsteer-
ing methodrunsin interactive time on PentiumII worksta-
tionsdueto apreviousimplementation,ourCHARON simu-
lationsaresometimessignificantlyslower(anorderof mag-
nitudeor more). We arecurrentlyexploring waysto speed
up simulationwithout sacrificingtheability of CHARON to
supportsystemanalysis.
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5.3 Ar chitecture

We have suggestedthata hybrid automatonarchitecture
is a flexible, modularframework for representingandorga-
nizing low-level navigationbehaviors. Otherresearchsug-
geststhatthis flexibility extendsevenbeyondtheparticular
behaviors uponwhich we basedour paper. For instance,in
therobotics-oriented[13], approachingtargetsandavoiding
obstaclesareconsideredastwo separateatomicbehaviors
which arejoined togetherin a hybrid automatonmodel to
createa single low-level navigation behavior functionally
similar to the onewe presentin section2.1. Froma simu-
lation standpoint,we do not seesignificantbenefitin con-
sideringobstacleavoidanceandtargetapproachasseparate
behaviors for our animationwork. From an architectural
standpoint,however, the result in [13] supportsour obser-
vationabouttheflexibility of thehybridautomatonmodel.

It seemsthat this flexibility would alsomake it straight-
forwardto extendourcurrentsystemwith ahybridautoma-
tonmodelof high-levelnavigationstrategies.Our low-level
navigation mechanismis essentiallya control of heading
angle,andit residesin theAngle agentin Figure2 (sec-
tion 3.3). Global, high-level navigation strategies, which
would determinewhich targetanactorwould chooseto go
to next, would residein theObjective agent.Dueto the
modularityof theunderlyinghybridsystemmodel,it would
be a simpleexerciseto integratethe two levels in a single
actor, or to changebehavior on oneof the levels without
affecting the other. It is not necessarilyobvious,however,
how to representsuchhigh-level strategiesin a hybrid au-
tomatonmodelthatretainsthereactive/behavioral flavor of
our low-level navigationsystem.(See[3] for discussion.)

6 Conclusionsand Extensions

Autonomousanimatedactors require complex intelli-
genceto successfullynavigatein animatedvirtual worlds.
Indeed,evenwhenconsideringonly low-level (local) nav-
igation, agentsmustdecideamongdifferentmodesof be-
havior, distinguishamongentitiesin theworld aroundthem,
etc.,andthenincorporateall this informationto createreal-
istic pathsthatreachtargetsandavoid obstacles.For a low-
level navigation strategy to be effective for a multi-agent
system,it mustaccountfor all thesekindsof intelligencein
astraightforward,scalablemanner.

Employing a hybrid systemsframework, we extended
thecrowd simulationandagentsteeringsystemof [15, 16]
to accommodatemany kinds of intelligence,including all
thosementionedin the above paragraph.Our extensions
includednavigationmodeswitching, soactorscouldmake
substantialreal-time changesin low-level navigation be-
havior in responseto unpredictableworld attributes. Fur-
ther, we implementedselectiverepeller responseto al-

low an actor’s navigation to reflect its subjective impres-
sionsandperceptionsof entitiesaroundit. We presented
our extensionsin a simpleexamplesystem,a hierarchical
hybrid systemfor multi-agentsteeringthat displaysthese
kinds of intelligence;we directly usedthis formalizedhy-
brid systemmodelto generatemulti-agentanimations.Our
examplesystemalso demonstrateshow a hybrid system-
orientedperspective caninfluenceandsimplify somereac-
tive/behavioral modeling,naturallyexpressingandempha-
sizing somedynamicaspectsof decision-makingfor navi-
gation. Our fundamentalideasmaybereadilyextendedor
re-appliedto other intelligent multi-agentnavigation sys-
tems.

In our future work, we will continueexploring features
providedby a hybrid systemsframework. In particular, we
hopeto developa hybrid systemmodelof intelligenthigh-
levelnavigationin CHARON; wecouldthenembedthislow-
level navigationsysteminto thehigh-level system(exploit-
ing themodularitymentionedin section2.2),creatingafull
systemfor agentnavigation. In addition, we are investi-
gatingthepotentialfor reasoningaboutanimationsystems
usinglogicsfor hybridsystems,asdiscussedin [4].

Despitethe relationshipbetweenhybrid systemtheory
andanimationsystems,this naturalinterdisciplinaryinter-
facehasnotbeenwell explored.Ourcurrentresultssuggest
thathybrid systemscancapturetheinterplaybetweencon-
tinuousanddiscretedynamicsthat naturallycharacterizes
someintelligentbehavior necessaryfor low-levelagentnav-
igation. We believe that furtherexplorationwill furtherex-
tendour perspectiveon andvocabularyof multi-agentnav-
igationandanimationsystems.
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