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Abstract

Animatedcharacters may exhibit several kinds of dy-
namic intelligencewhen performing low-level navigation
(i.e., navigationon a local perceptual scale): They de-
cide among different modesof behavior selectivelydis-
criminate entitiesin the world around them, perform ob-
stacleavoidance etc. In this paper we presenta hybrid
dynamicalsystemmodel of low-level navigationthat ac-
countsfor the above-mentionedinds of intelligence In
so doing the modelillustratesgenerl ideasabouthow a
hybrid systemgperspectivecan influenceand simplify suc
reactive/behavial modelingfor multi-agent systems. In
addition, we directly employedour formal hybrid system
modelto geneate animationghatillustrate our navigation
strategies.Ovenll, our resultssuggestthathierarchical hy-
brid systemsnayprovidea natural framevorkfor modeling
element®f intelligentanimatedactors.

1 Intr oduction

Autonomousanimatedcharactersin computergames
and othervirtual worlds may possesseveral kinds of dy-
namicintelligenceto enablereasonablegalisticnavigation
behavior. As a motivatingexample,consideranintelligent
animatedactornavigating in its virtual world. In onecon-
text, it continuouslynavigatesnearalong row of stationary
obstaclen its way to atarget(goal) position. It startsout
uncomfortablemaintaininga large distancebetweernitself
andthe obstaclesAs time passeshowever, it continuously
grows more comfortable which triggersdiscrete instanta-
neouschangedo its navigation: moving faster;allowing it-
selfto getcloserto obstaclesandgenerallypecomingmore
aggressie in its action. In addition, asit travels, it distin-
guishesamongdifferentkinds of obstaclesandamongdif-

ferentactorsaroundit. For instanceuponnearingadistant
target,it keepsasizabledistancebetweentself andanodd-
looking obstacleput it passe€loseto a nearbyfriend.

Navigation systemssuchasthe oneunderlyingthe mo-
tivating exampleabove may be naturally describedas hy-
brid dynamicalsystemghybrid systemsfor short),combi-
nationsof continuousanddiscretedynamics. (We discuss
hybrid systemsn moredetail in section2.2.) The actor’s
position (andcomfortlevel in its ervironment)may be de-
scribedby continuousdynamicschangedetweerdifferent
navigation stratgyiesmay be describedy discretedynam-
ics.

In this paper we presenta hybrid systemsapproachto
low-level navigation for animatedcharacterslt is a novel
applicationof theoreticalhybrid systemmodelsfrom both
the hybrid systemg3] andanimationperspecties.

As partof our presentationwe discusggeneraideasfor
employing a hybrid systemsramework to modelthe kind
of intelligent low-level navigation describedin the moti-
vating example. Considerthe diversity of dynamicintel-
ligencedemonstratedby the actorin that example. It au-
tonomouslyreachedts targetswithout colliding with obsta-
cles,respondindo moving obstacledn realtime. It decided
to changenavigationbehavior in responseo adynamically
changingquantity its comfort. It distinguishedamongen-
tities aroundit, perhapsalteringits courseto reflectits sub-
jective impressionf them. Notice further thatall of this
intelligenceappliesto low-level navigation responsespn
theorderof local perceptiormndimmediatespatio-temporal
concernsNoneof it is high-levelintelligence,ontheorder
of globalpathfindingor comple< deductve inference.

In additionto discussingyeneralideasfor modelingin-
telligent navigation, we also presenta specific,simple ex-
ample hybrid systemthat incorporateghem. Our system
augmentsheagentsteeringandcrowd simulationapproach
of [15, 16], retainingits reactvve, scalablenaturewhile ex-
pandingits behaioral intelligence.Our extensionsnclude



two that are highlightedin the above motivating example:
selectiverepellerresponsewhich allows the actorto dis-
tinguishamongvariousactorsandobstaclesaroundit; and
navigationmodeswitching, which allows the actorto au-
tonomouslyalterits generahavigationbehavior in response
to its dynamicallychangingcomfort. The hybrid systems
framawork is especiallywell suitedfor implementingnav-
igation mode switching, which is inherentlybasedon the
interplay of continuousand discretedynamicsthat hybrid
systemmodelsexplicitly emphasize.
Weimplementedurexamplenavigationsystemasahy-
brid systemusingthe general-purposkybrid systemspeci-
ficationtool CHARON [7], concretelylinking theoreticahy-
brid systemmodelswith practicalnavigation systems. In
addition,we directly employed our CHARON implementa-
tion to generateanimatedworlds of targets,obstaclesand
actorsthatdemonstraténtelligentnavigation.

2 Applying Hybrid SystemTheory to Multi-
agentAnimations

Systemswith bothcontinuousanddiscretedynamicsare
not new in animation,but it is not alwaysclearhow these
systemgelateto well-understoodhybrid systemmodels.In
contrast,we make a strongconnectionto existing hybrid
systentheoryby usingthe hybrid systemtool CHARON [7]
toimplementmulti-agentanimationsystemsOurcombina-
tion of rigoroustheoreticafoundationsdynamicalsystem-
orientedmodels andthe particularattributeswe modeldis-
tinguishesour approachfrom othersin behaioral anima-
tion andbehaioral robotics(e.g.,[22, 26, 28]).

We baseour animationsprimarily on the agentsteering
methodpresentedn [15]. Below, we review the tools we
employedto createour animationsand discussissuespar
ticularto implementingananimationsystemin CHARON.

2.1 A Dynamical Systemfor Agent Steering

Therehavebeenmary approache® modelingandguid-
ing the navigation behavior of autonomousgents.Socio-
physical studiesof human pedestrianbehaior have re-
sultedin social force models[17], which are more mo-
tivated by modeling crowds than by enabling fast com-
putation of individuals’ navigation. For individual enti-
ties, logicist, artificial intelligence-basedechniqueshave
beensuccessfullyusedfor cognitively empaveredagents
[21] and animatedactors[14]; perceptionand dynamics-
basedechnique$10, 24, 28] areoftenmorereadilyableto
adaptto dynamicervironments. Our particularapproach
to low-level agentnavigation is basedon the methodin
[15, 16], a scalable,adaptve approachto modeling mul-
tiple autonomousagentsin dynamicvirtual ervironments.

Like treatmentsof similar issuesin the field of beha-
ioral robotics[20, 22], we consideronly two-dimensional
motion, althoughthe mathematicafoundationsfor three-
dimensionahavigationalreadyexist [15].

Ouranimatedvorldsconsistbof threekindsof agentsac-
tors, targetsthatrepresentictors’goals,andobstacleghat
actorsattemptto avoid. Theremay be multiple actors,ob-
staclesandtargetsin ananimationsystem.Further obsta-
clesandtargetsmaybestaticand/ormoving. Thesecompo-
nentsprovide a generalconceptuapalettethatcanbe used
to expressa broadrangeof behaiors. For instanceanac-
tor performinga multi-parttaskcould be representety its
reachinga seriesof targetsin sequenceeachtarget corre-
spondingto acomponensubtask.

At the coreof the mathematicsinderlyingour animated
worlds are non-linearattractor andrepeller functionsthat
representhetargetsandobstaclegrespectiely) in thesys-
tem. Anothernon-linearsystemcombinestheir weighted
contributionsin calculatingan actor's angularvelocity, dy-
namically adaptingto real-time changesin the erviron-
ment. Togetherthesenon-linearsystemsyeneratenatural-
seemingmotion, dynamically changingthe headingangle
of anactorin responséo its dynamicervironment,guiding
it to avoid collisionswith obstaclesand other undesirable
behaiors. The agentheadingangle ¢ is computedby a
non-lineardynamicalsystemof theform:

¢ = f(¢7 en‘/) = |wtar|ftar + |wobs|fobs +n (1)

Thedynamicalfunctionsf,,,. and f,;s aretheattractorand
repellerfunctionsfor the system,w;,, andw,s aretheir
respectie weightson the agent,andn is a noisetermto
avoid local minimain the system.

This designreflectsthe adaptiveweightingof obstacles
andtargetsin the system: Entities exert differentamounts
of influenceon an actorat ary given moment,andthe ex-
tentof thesecontributionsvariesin realtime. For example,
considera casewherean actoris very closeto obstacles
that block much of its direct pathto its target (Figure 1).
In suchsituations,the actor should temporarily disregard
thetargetsothatit won'’t be drawvn into collisionswith the
obstaclesLater, whenit is in lessimminentdangerof col-
lision, the actorshouldonceagainconsiderthetarget. The
adaptve weighting systemcapturessuchintuitions. In ex-
tremecontetsliketheonejustdescribedw;,, goeso zero.
Similarly, in contextswhereanactorshouldconsideronly a
target(e.g.,wherethereareno nearbyobstaclesyw,ys goes
to zero.In non-extremecasestheweightson obstaclesand
targetsare non-zero,andthey vary smoothlyover time to
reflectthe changingrelative positionsof actors,obstacles,
andtargets.

The weightsthemseles are determinedby computing
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Figure 1. Two situations distinguished by
adaptive weighting. On the left, the actor
(A) should consider both the obstacle (OB)
and the target (T) in determining its cour se.
On the right, the actor should no longer
consider the target; it should focus only on
avoiding the obstac les. Our dynamical sys-
tem for agent steering automaticall y distin-
guishes the two cases, changing the actor’s
behavior as appropriate .

thefixedpointsof thefollowing non-linearsystem:

. _ 2 2
Wtar = alwtar(l - wéar) - ’712thng175 +n (2)
Wobs = a2wobs(1 - wobs) — Y21WobsWiqgy +n

The o and~ parametersretime-dependentunctionsde-
signedto reflectconditionsfor the stability of the system.
They ensurefor instance that wy,, is zerowhenthe ac-
tor should be temporarily disregardinga tamget, that weps

is zerowhenthe actor shouldbe temporarilydisregarding

obstaclesgtc. Many other parametersre also concealed

in the termspresentedabove, but a discussionof the full
mechanicf the adaptve weighting systemis beyond the
scopeof this paper We consideiindividual parametersnly
asneededn this paper;we referreadergto [15] for more
technicalinformation.

This is only an overview of one significantpart of the
agentsteeringsystem,but it gives a feel for the kind of
mathematicsnvolved. Further it introducesthe role pa-
rameterplayin agentehaior, anotionto whichwereturn
laterin this paper

2.2 Hybrid Systemsand CHARON

Hybrid systemsoccurfrequentlyand naturallyin mary
contets, andthey are studiedby both computerscientists
and control theorists[1, 2]. Pastdomainsof application
for hybrid systemmodelsinclude descriptionsof biologi-
cal processef6], air-traffic managemergystemq27], and
manufcturingsystemg25]. Froma generaljntuitive per

spectve, ary systemcharacterizedy discretetransitions
betweermodesof continuouscontrolis a hybrid system.

Thereareseveraldifferentformal modelsfor hybrid sys-
tems. Net-basednodelssuchas ConstraintNets[29], for
instancehave beenacknavledgedin literatureon cognitive
agentsWe focusin particularonautomata-theoretimodels
suchashybrid automatd8, 12]. As a brief, non-technical
introductionto this perspectie, we considera hybrid au-
tomatonas having: a setof discrete statescalled control
modes a continuousstatespace(a subsetof R™ for some
n); anddescriptionsof systemevolution, with constraints
bothon continuousevolution within a controlmodeandon
discretetransitionsbetweencontrol modes. A stateof the
overall systemis a pair (control mode continuousstate).
Researchand analysisof hybrid automataunderliesprac-
tical toolssuchasCHARON [7].

The architectureof a hybrid systemin CHARON is ex-
pressedas hierarchical agents a model conceptuallysim-
ilar to hierarchicalhybrid automata. The key featuresof
CHARON are:

Hierar chy. The building block for describingthe system
architecturas anagentthatcommunicatesvith its en-
vironmentvia sharedvariables. The building block
for describingflow of controlinside an atomic agent
is a mode A modeis basicallya hierarchicalstate
machine,i.e., it may have submodesand transitions
connectingthem. CHARON allows sharing of modes
sothatthe samemodedefinitioncanbeinstantiatedn
multiple contexts.

Discreteupdates. In CHARON, discreteupdatesarespeci-
fied by guardedactionslabelingtransitionsconnecting
the modes. Actions may call externally definedJava
functionsto performcomplex datamanipulations.

Continuous updates. Someof the variablesin CHARON
can be declaredanalog, andthey flow continuously
duringcontinuousupdateghatmodelpassagef time.
Theevolution of analogvariablescanbeconstrainedn
threeways: differential constraintge.g.,by equations
suchasz = f(z,u)), algebraic constraintge.g., by
equationssuchasy = g(z,u)), andinvariants(e.g.,
|z — y| < e) thatlimit theallowed durationsof flows.
Suchconstraintcanbe declaredat differentlevels of
themodehierarchy

Modularfeaturesof CHARON allow succinctandstructured
descriptionof complex systems Amongotherbenefitsthis

modularity providesa natural-seemingtructurefor devel-

opinganimationsystemswith multiple levelsof behavior.



3 A Hybrid Systemfor Intelligent Low-Level
Navigation

We now presentan example navigation system that
demonstrateghe kinds of intelligence underlying some
low-level agentsteeringbehaior. It is a substantiakxten-
sionof the systemsummarizedn section2.1, but it retains
thedesirablequalitiesof its predecesspmcludingrigorous
theoreticalfoundations,easyextensibility for higherlevel
navigationapplicationsandthe scalabilityrequiredfor the
computationaburdensof multi-agentapplications.In par
ticular, we emphasizéwo significantextensions:selective
repellerresponseandnavigationmodeswitching.

Not coincidentally we presenour navigation systemas
a hybrid dynamicalsystem. The hybrid systemsperspec-
tive both motivatedandsimplified our low-level navigation
modeling. In particular it enabledus to formally specify
navigation modeswitchingin a rigorous, system-theoretic
framawork.

3.1 Selectve Repeller Response

In typical low-level navigation examplesgeneratedy
the framework in [15], the “aggressieness’of an actoris
held constant. (“Aggressveness’refersto the willingness
of an actorto getcloseto repellers—obstaclesand other
actors—in its ervironment.) Thus,actorsappliedthe same
notion of “personalspace”to otheractorsasto obstacles.
Further theframavork makesno distinctionwithin classes.
Every obstaclds treatedthe sameasevery other;animated
humanscould not recognizethat someobstaclesvereless
noxiousthanothers(e.g.,flower bedsvs. trashcans).Sim-
ilarly, with respectto otheractors,an actor could not get
closerto one(afriend) thananother(a stranger).

For our system,we extend the previous framework to
allow an intelligent actor to respondselectivelyto the in-
dividual entitiesaroundit. Low-level navigation behavior
maythenreflectactors’subjectve impression®f elements
of theworld aroundthem.

In eachactor, thereis a parametely in the framewvork
of [15] that encodesaggressieness:Raising/lavering dg
will increase/decreadbe effect of arepelleron thatactor
As a constant,d, appliesequallyto all repellers. To en-
able selectie repellerresponsewe insteadimplementd
asa function that returnsa value for eachrepeller Thus,
in termsof aggressienesseachactorhasits own relation-
shipswith every repellerin thatworld; a lookup function
for dy encodeshisin astraightforvardway. Thisextension
enableghe selectve responseslescribedn the motivating
exampleatthebeginningof this paperin whichthemoving
actoroptsto go closerto a stationaryactor, a friend, than
to a stationaryobstacle It alsoenablesnorecomplex rela-
tionships.Indeed thefunctionitself couldevolve overtime,

representinghangesn interpersonatlosenes avirtual
world asit appliesto low-level navigation. For theexample
animationgn sectiond.2, however, our d, is a staticlookup
function.

3.2 Navigation Mode Switching

An intelligentanimatedactormight notrely onthe same
dynamicalnavigation systemfor its entirepath. Recall,for
instance,the motivating example at the beginning of this
paper An actor might alter its basicnavigation behaior
basedon a variety of factors: increaseccomfortin its en-
vironment; awarenesghat it is amongfriends; or even a
simplerecognitionthatit nolongerrequirescomplex obsta-
cle avoidanceto reachits goal. Following the framework in
[15], eachof thesebehariorswould bedescribedy adiffer-
entdynamicalsystem.In our terminology eachdynamical
systemessentiallydefinesa modeof navigation,andanac-
tor mightengagen navigationmodeswitching asit follows
its course,‘changingits mind” aboutappropriatdow-level
behaior muchasit might abouthigh-level behaior (e.g.,
globalpathplanning).

We anticipate,in particular that suchchangesould be
real-timeresponseso real-timechangesn the actor’s dy-
namicvirtual environment. This obsenation motivatesour
utilizing a hybrid systemsframework for our navigation
model;in it, we areableto specifytransitionconditionsin-
dependenbf pre-determinedpatio-temporalocations. If
we restrictedoursehesto transitionsonly at pre-determined
pointsin spaceor time, we would beeffectively abandoning
thereal-timedynamicnatureof low-level navigation.

To enablethe kind of real-time mode switching de-
scribedin our motivatingexample,we introducea variable
comfortintendedo represenhow generallycomfortablean
actorfeelsin its currentlocal environment.In ourmodel,an
actor’s comfortvariesdynamicallyin realtime, justlike its
position. Therefore we give a differentialequationform to
describethe evolution of anactor’s comfort:

¢ = kn,base, + f(en). 3)

In (3), ¢ is thevariablefor comfort,andk,, andbase, are
real-valuedparametershoth constanin a modem but dif-
ferentin eachmode. Parameteibasg, representshe base
rate of changein that mode,the fundamentalway the ac-
tor's comfortevolves. Parametek,, is a scalingfactor;for
our demonstrationsn section4.2 and on the supplemen-
tary website[5], we usehigh scalingfactorsin somemodes
to inducefastermodechanges.We further simplify equa-
tion (3) by choosinga straightforwardway to representhe
dynamicinfluenceof time andtheworld onanactors com-
fort, makingit suchthat¢ doesnot dependon ¢. Thereis
norestrictionon hybrid systemghatimposeghis, however,



and our generalform can be readily extendedto apply to
morethanjust our simpleexample.

An actor's comfortis alsoinfluencedy its ervironment,
asrepresenteth equation(3) by thefunction f(erv). Func-
tion f could be a well definedfunction on a thoughtfully
designedset of aguments(world attributes, motivations,
etc.). We are more interestedin demonstratinghe flexi-
bility and generalityof the framework thanin positing a
particularworld model,hawever, sowe implementf (erv)
asa randomnumbergeneratorboundedappropriatelyfor
ourvaluesof k,,, andbase,.

In our model, comfort varies dynamically with time,
andan actor’s behaior changesvhenits comfortreaches
certain thresholdlevels. In particular as an actor gets
morecomfortablein its environment,its velocity increases,
it tendsto becomemore aggressie (in the senseof sec-
tion 3.1) with respecto obstaclesand otheractorsaround
it, andit changesheway its comfortevolves.Eachof these
new behaior systems—marked by new velocity, new dg
(eitherconstanbr function-valuedd,), andnew parameters
for the equationgoverningthe evolution of c— is its own
navigationmode.Thus,nhavigationmodeswitchingencodes
thebehaior changeshatoccuruponcomfortreachingcer
tain thresholds Mode transitionsdependon comforte, not
necessarilpnary pre-specifieghointsin time or space For
example,transitionsmay occuruponan actor's reachinga
target,but they arenot constrainedo do so.

Transitionsin our modelmay alsodependon the trend
of the actor’s comfort(i.e., ¢) aswell asthe comfortvalue
itself. For instance whendecidingwhich modeof obsta-
cle avoidantbehaior to employ for a particularportion of
a navigation, an actortakesa certaintransitionif its com-
fort level is very high or if comfortis moderatelyhigh but
trendinghigheratthattime (i.e., ¢ > 0). This exemplifies
how the hybrid systemsperspectie encourages dynam-
ically orientedapproachto modelingsomekinds of real-
time decisionmaking. Mode transitiondecisionsmay be
madeindependentf time andspacedependenon boththe
zero'th-ordervalueof comfortandits first-ordertrend.

3.3 SystemAr chitecture

The kind of navigation model featuredin this paperis
naturallydescribedasa hybrid system:At its corearedis-
crete transitionsbetweencontinuousdynamical systems.
Thus motivated,we implementedour example navigation
systemasa hierarchicahybrid systemin CHARON. In this
sectionwe describdts architecture.

Figure 2 shows the CHARON-agentarchitecturebehind
our modelof ananimatedactor performinglow-level nav-
igation. CHARON agents(asdiscussedn section2.2) are
representeds rectangles. Note the hierarchy: The navi-
gatingactor(i.e., the outermostagent)hasfive component
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Figure 2. The CHARON-agent-level architec-
ture of an actor performing low-level naviga-
tion. The outermost, darkest rectangle rep-
resents an actor. The rectangles contained
within it (Vel ocity, Angl e, etc.) are sub-
agents.

sub-agentsincluding Posi t i on to determineits current
positionin avirtual world, Sensor to manageperception,
nj ect i ve to determindts next target,and Angl e, the
dynamicsof which we have describedn this paper Each
of theseCHARON sub-agentsneritsindependentreatment;
eachembodiesits own model of someaspectof naviga-
tion. For our implementation,we use a straightforvard
Vel oci ty sub-agentsupplyinga constantvelocity that
other sub-agentge.g., Angl e) can effectively changein

realtime. Our underlyingarchitecturehowever, allows for

amorecomple treatmenbf velocity.

The navigationmodeswitchingdescribedn section3.2
occursin CHARON sub-agenfAngl e, in which eachnavi-
gationmodeis straightforvardly representedsa CHARON
mode.(Section2.2 discussesherolesof modesandagents
in CHARON.) As an actor becomegmnore comfortable,it
switchego anew navigationmode.Aggressvenesparam-
eterdy, velocity, andthe parameter®f the dynamicalsys-
temof evolution for comfort(seeequation(3)) arechanged
to createa new notion of appropriateproximity to others
that reflectsthat actor’s new comfort. Comfortlevel may
alsodecreasever the courseof a navigation, so our sys-
temalsoincludessomepossibleswitchesto lower-comfort
modes.A schematiadiagramof this straightforvardtransi-
tion systemis availableat the supplementaryvebsite[5].

We alsoinclude a mode-transitiorsubsystenthat em-
phasizeselectverepelleresponseWhentheactorreaches
a certainpoint in its course,it entersthis subsystem.The
first navigation sggmentin this subsystermusesthe stan-
dard, non-selectie obstacleavoidance. After reachinga
target, the actorthenswitchesinto one of two otherpossi-
ble modes:a simple,linearcourse(no obstacleavoidance);
or selectve obstacleavoidance. A schematiadiagramthat
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Figure 3. A subsystem that emphasiz es selec-
tive repeller response . This subsystem may
be embedded in a larger navigation system
(and altered, as needed) as part of the Angl e
agent (see Figure 2). Note that transitions
depend on both ¢ (comfort) and ¢.

shavstransitionconditionsfor this mode-switchingubsys-
temisin Figure3.

The particularsystemdescribedn this sectionis merely
a simple example, intendedto straightforvardly illustrate
both our generalideason low-level navigation and the
agent-orientedrchitecturesupportedoy CHARON. Hier-
archical CHARON agentscorresponcdheatly to actorsand
other world entities, as well as to computationalsub-
componentsof actors that merit independenttreatment.
CHARON modescorrespondneatly to modesof behaior
for theseentities.By simultaneouslyntegratinganddistin-
guishingtheseconceptualevels, hierarchicahybrid system
modelscan naturally representabstractionghat we con-
siderwhen designingintelligent navigation systems. Fur-
thermore,by adaptingthe systempresentechere,a more
completedescriptiorof world attributesandinfluencegsee,
e.g.,[9, 11, 18, 23]) couldbeincorporatednto anavigation
model.

4 Implementation Details and Experiments

4.1 Creating Animations from Hybrid System
Models

We implemented our example navigation systems
in CHARON using the key concepts noted in sec-
tion 2.2. Navigating actorsare implementedas CHARON
agents (see section 3.3). Modes are createdto rep-
resent continuous behaviors; particular continuous dy-
namics (e.g., the non-linear system describedin sec-
tion 2.1) are representedas differential or algebraic
constraintsof a form such as di ff {d(angle) =
Angl eFunction(angl e, ...) }. If constraintsarenec-
essanyto limit thetime in a particularmode,they arerep-
resentedasinvariantssuchasi nv {Cond && ! Cond2
&& di stance(Xx, y) <=di stance(x, z) }. Guarded

transitionsbetweenmodesare presentedn a straightfor
ward trans from Model to Mbde2 when Cond
do Ef fect syntax; whenthe guard Cond is true, the
transitionis enabledandif it is taken, statemengf f ect
is executedalongwith the systems jump from Mbdel to
Mode2. In this way, the underlyingcontinuousmathemat-
ics andrelationsbetweemnmodesof behavior are explicitly
representedth a CHARON program.Further the modularity
of agent-orientedCHARON codemalkesit easyto change
oneaspecbf a systemwhile leaving othersintact. For ex-
ample,it is straightforvardto addne~v modesto our navi-
gationmodeswitchingsystemswithoutinterferingwith ary
of theexisting ones.

CHARON also generatesaumericalsimulationsof hy-
brid systems,which we exploited in creatinganimations
from our formal systemspecifications. We simply sim-
ulated our navigation systemsin CHARON, then useda
small translationroutine (like a Perl script) to re-format
the outputof thosesimulations. The resultof this transla-
tion wasthenusedasinputto anoutsideapplicationwhich
createdanimationsn which characteactioncorresponded
to the frame-by-framedata generatecdoy CHARON. Ex-
ceptfor small details(e.g.,input formatfor the animation-
generator)the proceduras straightforvard. Issueof visu-
alization(renderingcharactemodels cameramotion,etc.)
areindependenbf CHARON andmay be performedusing
corventionalmethods.

Figuresin section4.2 containimagesfrom our anima-
tions. In our scenesand experiments actors(white mice)
navigate in a virtual world of targets (usually blocks of
cheese)pbstaclegusuallytoys onemightfind onthefloor),
andotheractors. (CHARON-generatedinimations,nclud-
ing thosefrom whichtheseriguresweretaken,maybeseen
atthe supplementaryebsitefor this paper5].)

4.2 Multi-agent Animations

Figures4—7 shav framesfrom animationsthat demon-
strateour approachto intelligentlow-level navigation. An
actor(white mouse) moving from the lower left to the up-
perright, beginsa navigationwith a comfortvalueof 0 and
a uniformly applieddy valueof 4. It startsout by mov-
ing arounda seriesof obstaclegnot shavn in this paper—
seesupplementaryvebsite[5] for details),becomingmore
comfortableandmoreaggressie. The comfortanddy, (ag-
gressionyaluesof the mouseareautonomoushalteredin
accordwith the navigation mode switching systemin sec-
tion 3.2; we, the designerf theanimation,do notimpose
thatthosevaluesbe at ary particularlevel atary particular
place/timeotherthanat the onsetof the navigation.

Eventually the white mousearrivesat a positionwhere
it begins a simple two-segmenttask: get the first/nearest
block of cheesethen go get the more distantcheese.In



Figure 4. An actor (white mouse, on right side
of image), having already swerved around a
stationar y obstac le (sneaker), now reacting to
avoid a moving obstac le (train). The lines in
the picture indicate the paths of the actor and
moving obstac le before and after their current
positions.

thefirst sgment(Figure4), the actoravoids a staticobsta-
cle (snealer) and a moving obstacle(train) on the way to
thefirst tagetcheeseThis is a straightforward application
of obstacleavoidancewithout selectie repellerresponser
navigation modeswitching. The mouseappliesa uniform
do valueof 2.5to bothobstacles.

Our protagonismouseneednot engagen complec eva-
sive behaior in the secondsegment. It could reachthe
secondtarget simply by traveling in a straightline. Or, it
might insteadopt for selectve repellerresponsedepend-
ing on its comfortlevel. In our experiment,we implement
this by having the mouseenterthe subsystenpresentedn
Figure3 whenit reachegshefirst target. Then,becausehe
mouses comfortis 6.1 andtrendinghigher(its derivative at
thetime is approximately0.075),it optsfor straightlinear
navigation, asdisplayedin Figure5. As partof this nav-
igation mode switch (seesection3.2), its dy value drops
to 0 —it no longereven considersobstaclesit just moves
straight—and its velocity risesfrom 0.3 to 0.5 units per
simulatedsecond.

If it weresomavhatlesscomfortablein its ervironment,
however, the actor might take a different course. For in-
stancegonsiderascenariovith two majordifferencesrom
the one just described: The mouses comfort is only 4.1
when it makes a navigation mode switch; and thereis a
toy mouseas an obstaclein placeof the dinosaurin Fig-

Figure 5. The actor (white mouse), having
switc hed to simpler behavior. Its straight lin-
ear cour se takes it between two obstac les (a
flying saucer and a dinosaur).

ure5. Ourwhite mouseprotagonistnightnotbequitecom-
fortableenoughto decideto forgo complex obstacleavoid-

ance,but it might be comfortableenoughto recognizethe
toy mouseon its right asnon-threateningwhile the flying

sauceron its left remainstroubling). As a result,it would

dynamically adjustits courseto passasymmetricallybe-
tweentheobstaclesasshavnin Figure6. We modelthis by
giving our protagonistidy valueof 1.2asappliedto thefly-

ing saucemandad, valueof 0.6 asappliedto thetoy mouse.
Thesechangepermitthewhite mouseto autonomouslyle-
termineits asymmetriccourse.

If it insteaddecidedto maintainits complex obstacle
avoidantbehavior, treatingall repellersthe same,it would
take amuchlongerpath,goingaroundboth obstaclesThis
optionrepresentakind of controlexperimentastraightfor
ward continuationof the standardobstacleavoidancethat
guidedit upuntil thefirsttarget; Figure7 is aframefromthe
resultinganimation,shaving how muchfartherthe white
mousegoesif it doesnot considemavigationmodeswitch-
ing or selectve repellerresponse(See[4] and[5] for fur-
therdiscussiorandotheranimations.)

The website[5] of supplementarynaterialcontainsani-
mationsthatfurtherdemonstratenodeswitchingandselec-
tive repellerresponseincluding one that demonstratesll
the featuresin the systemdescribedn section3.3 of this
paper



Figure 6. Contrast with Figure 5: The actor
(white mouse), having switc hed to selective
repeller response . It stays far from the flying
saucer obstac le on its left, but it passes close
by the friendl y-looking obstac le (toy mouse)
on its right when navigating around it.

5 Noteson Practical Application of Hybrid
SystemTheory

In this sectionwe presenta few notesaboutpracticalis-
suesthatarosein our applicationof hybrid systemgheory
Detaileddiscussion®f theseissuesxtendwell beyondour
currentscope put thesebrief treatmentg&xposesomemoti-
vationandcontext for thework in this paper

5.1 Verification

One primary motivation behind our work is the even-
tual developmentof animation-orientedormal verification
tools e.g.,programghatcould mechanicallyerify aspects
of animationsystems. Such automatedverification pro-
gramscould be powerful designtools; animatorouldrea-
sonaboutmorethanjustindividual animationsthey could
reasoraboutgenerakystemgshatunderlieentireclasseof
animationsFor example,onecouldformally prove proper
tiesaboutwhole classe®f possiblecharactersn a particu-
lar virtual world.

Verificationis anextremelyactive areaof researclin the
field of hybrid systemg2]. Our presentwork is, in part,
afirst explorationof animationfrom a hybrid systemser
spectve, creatinga connectiorso thatmodallogicsfor hy-
brid systemsnightbeemployedto reasoraboutanimation.

Figure 7. Contrast with Figure 5: The actor,
maintaining the comple x, obstac le-avoidant
behavior. It winds up taking along er route to
the target.

(A discussiorof thelogical frameworksestablishedor rea-
soningabouthybrid systemss beyondthe scopeof this pa-
per; see[4] for details.) Indeed,relatedwork with robots
(e.g.,[19]) suggestshata hybrid systemd$ramework could
be appropriatefor reasoningaboutanimationswithout un-
duedisrggardfor the dynamicnatureof animationsystems.

5.2 Simulation

Our experience shovs that CHARON simulations of
formally specified animation systemsoften take longer
than simulationsof equivalent systemscoded outside of
CHARON [3]. Briefly, we believe the reasongor this are
largelyrelatedto thedifferencesn primarygoalsof thetwo
disciplines hybrid systemsandanimation.The hybrid sys-
temssideemphasizeanalysis;for CHARON, accuratesim-
ulationis essentialandslow simulationis acceptableOn
theanimationside,speeds moreimportantthanextremely
fine precision.Thus,althoughwe know thatouragentsteer
ing methodrunsin interactive time on Pentiumll worksta-
tionsdueto apreviousimplementationpur CHARON simu-
lationsaresometimesignificantlyslowver (anorderof mag-
nitude or more). We are currentlyexploring waysto speed
up simulationwithout sacrificingthe ability of CHARON to
supportsystemanalysis.



5.3 Architecture

We have suggestedhata hybrid automatorarchitecture
is aflexible, modularframework for representingndorga-
nizing low-level navigation behaiors. Otherresearchsug-
geststhatthis flexibility extendsevenbeyondthe particular
behaiors uponwhich we basedour paper For instancejn
therobotics-oriente13], approachingargetsandavoiding
obstaclesare consideredastwo separateatomic behaviors
which arejoined togetherin a hybrid automatormodelto
createa single low-level navigation behavior functionally
similar to the onewe presentin section2.1. Froma simu-
lation standpointwe do not seesignificantbenefitin con-
sideringobstacleavoidanceandtargetapproactasseparate
behaiors for our animationwork. From an architectural
standpointhowever, the resultin [13] supportsour obser
vationabouttheflexibility of the hybrid automatormodel.

It seemghatthis flexibility would alsomake it straight-
forwardto extendour currentsystemwith ahybrid automa-
tonmodelof high-level navigationstratejies.Ourlow-level
navigation mechanismis essentiallya control of heading
angle,andit residesin the Angl e agentin Figure?2 (sec-
tion 3.3). Global, high-level navigation strateies, which
would determinewhich targetan actorwould chooseto go
to next, would residein the Obj ect i ve agent.Dueto the
modularityof theunderlyinghybrid systemmodel,it would
be a simple exerciseto integratethe two levelsin a single
actor, or to changebehaior on one of the levels without
affectingthe other It is not necessarilyobvious, however,
how to represensuchhigh-level stratgiesin a hybrid au-
tomatonmodelthatretainsthe reactve/behaioral flavor of
our low-level navigationsystem.(See[3] for discussion.)

6 Conclusionsand Extensions

Autonomousanimatedactors require complex intelli-
genceto successfullynavigatein animatedvirtual worlds.
Indeed,evenwhenconsideringonly low-level (local) nav-
igation, agentsmustdecideamongdifferentmodesof be-
havior, distinguishamongentitiesin theworld aroundthem,
etc.,andthenincorporateall thisinformationto createreal-
istic pathsthatreachtargetsandavoid obstaclesFor alow-
level navigation stratgy to be effective for a multi-agent
systemjt mustaccounffor all thesekindsof intelligencein
astraightforvard,scalablemanner

Employing a hybrid systemsframewvork, we extended
the crowd simulationandagentsteeringsystemof [15, 16|
to accommodatenary kinds of intelligence,including all
thosementionedin the above paragraph. Our extensions
includednavigationmodeswitching, so actorscould make
substantialreal-time changesin low-level navigation be-
havior in responsdo unpredictablevorld attributes. Fur
ther, we implementedselectiverepeller responseto al-

low an actors navigation to reflectits subjectve impres-
sionsand perceptionf entitiesaroundit. We presented
our extensionsin a simple examplesystem,a hierarchical
hybrid systemfor multi-agentsteeringthat displaysthese
kinds of intelligence;we directly usedthis formalizedhy-
brid systemmodelto generatenulti-agentanimations.Our
example systemalso demonstratehiow a hybrid system-
orientedperspectre caninfluenceandsimplify somereac-
tive/behaioral modeling,naturallyexpressingandempha-
sizing somedynamicaspectof decision-makingor navi-
gation. Our fundamentaldeasmay be readily extendedor
re-appliedto other intelligent multi-agentnavigation sys-
tems.

In our future work, we will continueexploring features
providedby a hybrid systemsramework. In particular we
hopeto developa hybrid systemmodelof intelligenthigh-
level navigationin CHARON; we couldthenembedhislow-
level navigation systeminto the high-level system(exploit-
ing themodularitymentionedn section2.2), creatingafull
systemfor agentnavigation. In addition, we are investi-
gatingthe potentialfor reasoningaboutanimationsystems
usinglogicsfor hybrid systemsasdiscussedn [4].

Despitethe relationshipbetweenhybrid systemtheory
andanimationsystemsthis naturalinterdisciplinaryinter-
facehasnotbeenwell explored.Our currentresultssuggest
thathybrid systemscancapturethe interplaybetweencon-
tinuousand discretedynamicsthat naturally characterizes
someintelligentbehaior necessarfor low-level agentnav-
igation. We believe thatfurtherexplorationwill furtherex-
tendour perspectie on andvocatulary of multi-agentnav-
igationandanimationsystems.
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