
Model-based Design and Implementation of Embedded Software
for Medical Devices

Rajeev Alur
University of Pennsylvania

Realizing the potential of smart and autonomous medical devices will be predicated upon our
ability to produce embedded software that can effectively and safely harness the functionality of
sensors and processors. Embedded software is different, and more demanding, than the typical
programming applications in many ways. Modern programming languages abstract away from real
time and resources, and do not provide adequate support for embedded applications. Consequently,
current development of embedded software requires significant low-level manual effort for scheduling
and component assembly. This is inherently error-prone, time-consuming and platform-dependent.
Consequently, developing novel programming and implementation methodology for synthesizing
portable, predictable embedded software is an important challenge for high confidence medical
devices.

Reliability

To provide assurance guarantees for medical devices, a formal approach to design is appealing.
Model based and formal methods have been successful in targeted applications such as micropro-
cessor designs, and we believe that the same success is feasible in the domain of medical devices.
Such an approach would constitute the following steps

1. Define requirements of the system in a mathematically precise notation;

2. Design a high level model of the control algorithm for the medical device;

3. Design a high level model of the environment in which the device will operate;

4. Subject the device model together with environment model to powerful analysis techniques
such as simulation, optimization, and verification;

5. Generate code automatically from the device model.

There are multiple research challenges that need to be addressed to develop the model based
approach. We list some of them along with possible emerging directions:

Modeling: The appropriate mathematical model for embedded software systems is hybrid systems
that combines the traditional state-machine based models for discrete control with classical
differential- and algebraic-equations based models for continuously evolving physical activi-
ties. For modeling the environment of medical devices, the stochastic aspects also are essential.
Another desirable feature of modeling is compositionality so that different components of the
system can be described and analyzed in a modular manner. Developing a compositional
and mathematically rigorous modeling framework for stochastic hybrid systems will be an
important research direction.

Model Checking: Model checking tools can reveal design bugs at early stages by subjecting par-
tial models for compatibility checks against specifications. Impressive progress in symbolic
state-space exploration techniques has enhanced the applicability of model checking signifi-
cantly. This has led to improved reliability for network protocols and device drivers. However,

1



developing similar technology for medical devices needs sustained research in analysis tools
for stochastic and hybrid models.

Software generation: Generating embedded software directly from high-level models, such as
hybrid systems, is appealing, but challenging due to the wide gap between the two. In
current practice, this gap is bridged with significant manual effort by exploiting the run-time
support offered by operating systems for managing tasks and interrupts. A key challenge to
systematic software synthesis from hybrid models is to ensure that one can infer properties
of the software from the properties of the model, and this problem is receiving increasing
attention from researchers.

System Integration

Contemporary software development emphasizes components with clearly specified APIs. A static
API for a software component such as a Java library class consists of all the (public) methods,
along with the types of input parameters and returned values, that the component supports. This
promotes a clear separation between the specification of the component and its implementation.
Such static APIs can be enforced using type systems, but while indispensable, only offer a partial
solution to designing bug-free systems as these APIs do not capture constraints on resources, real-
time guarantees, and other quality-of-service aspects. Consequently, they offer little assistance in
“system” integration. This is an important issue not only for being able to derive system-level
performance and correctness guarantees, but also for being able to assemble components in a cost
effective manner.

Interfaces for Embedded Components: The notion of an interface for a device interacting
with a patient must incorporate information about timing delays and continuous parameters
such as threshold levels. Capturing the notion of quality-of-service abstractly, and having
mechanisms that can enforce the adherence to interfaces as well as check compatibility between
components interfaces, is an emerging and challenging trend in embedded systems research.

Biography

Rajeev Alur is Zisman Family Professor of Computer and Information Science at the University
of Pennsylvania. He obtained his bachelor’s degree in computer science from Indian Institute of
Technology at Kanpur in 1987, and PhD in computer science from Stanford University in 1991.
Before joining Penn in 1997, he was with Computing Science Research Center in Bell Laboratories.
His areas of research include formal modeling and analysis of reactive systems, hybrid systems,
concurrency theory, and design automation for embedded software. His awards include President
of India’s Gold Medal for academic excellence (1987), US National Science Foundation’s CAREER
(1997) and ITR (2001) awards, and Alfred P. Sloan Faculty Fellowship (1999). His recent research
projects include Mocha (a model checker for compositional analysis of reactive systems using game-
based requirements and assume-guarantee reasoning), Hermes (a modeling and verification tool for
hierarchical state machines), OpEm (open APIs for embedded devices such as smartcards), JIST
(Synthesis of behavioral interfaces for Java classes), and Charon (a modeling and verification tool
for embedded control systems based on hybrid systems theory). Prof. Alur has been a coPI in
DARPA’s initiative on model-based design of embedded systems, and ARO’s initiative on high
confidence embedded systems.

2


