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Abstract— The existing tradeoff between control system
performance and the detection rate for replay attacks highlights
the need to provide an optimal control policy that balances
the security overhead with control cost. We employ a finite
horizon, zero-sum, nonstationary stochastic game approach
to minimize the worst-case control and detection cost, and
obtain an optimal control policy for switching between control-
cost optimal (but nonsecure) and secure (but cost-suboptimal)
controllers in presence of replay attacks. To formulate the game,
we quantify game parameters using knowledge of the system
dynamics, controller design and utilized statistical detector.
We show that the optimal strategy for the system exists, and
present a suboptimal algorithm used to calculate the system’s
strategy by combining robust game techniques and a finite
horizon stationary stochastic game algorithm. Our approach
can be generalized for any system with multiple finite cost,
time-invariant linear controllers/estimators/intrusion detectors.

I. INTRODUCTION

Cyber Physical Systems (CPS) feature tight integration of
embedded computation, networks, and controlled physical
processes [1]. This interaction between continuous physi-
cal dynamics, and discrete communication and computation
substrates have made CPS vulnerable to malicious attacks
beyond the standard cyber attacks [2]. Successful attacks on
CPS could hamper the critical infrastructure with undesired
consequences. For example, the Maroochy Water incident
and the response discussed in [3] raised attention to security
challenges and requirements for secure CPS [2], [1].

Several attack models, including physical attack, data
deception attack, data denial-of-service attack (DoS), zero
dynamics attack, and replay attack are analyzed in [4]. Most
of these attacks assume some knowledge of the system’s
dynamics. On the other hand, even without any information
about the system (including the controller’s design), with
replay attacks the attacker can record and resend delayed
sensor measurements to the controller, causing deterioration
in control performance (or even unstable behavior). Mo and
Sinopoli designed a countermeasure method to increase the
detection rate for replay attacks, which are undetectable by
some statistical detector, like χ2 detector [5]. By adding
a Gaussian signal to the optimal control input, the control
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performance is sacrificed to increase the attack detection rate.
Consequently, there is a need to provide a control strategy
that balances the control and security requirements.

Game theory application for security has raised a lot of
interest in recent years. The survey [6] provides a selected
set of works that use game-theoretic approaches in computer
networks security and privacy problems. Zhu et al. define
a zero-sum stochastic game for the design of an Intrusion
Detection System (IDS) and provide the stationary optimal
strategy [7]. Robust algorithms against well-defined uncer-
tainties are presented in [8]. A game theoretic formulation for
minimax or robust estimation in the presence of faults, and
the existence conditions for optimal solutions are discussed
in [9]. Yet, there exist many challenges in applying these
approaches for design of secure CPS. As stated in [6], one
problem with game theoretic techniques in security modeling
is the difficulty of quantifying security game parameters.

In this work we design a zero-sum, finite horizon, nonsta-
tionary stochastic game for minimizing the worst-case con-
trol and detection cost, and obtain an optimal control policy
for switching between control-cost optimal (but nonsecure)
and secure (but cost-suboptimal) controllers in presence of
replay attacks. Therefore, in a system dynamic fashion we
balance the control performance and security overhead for
replay attack detection. To achieve this, we quantify game
parameters using the knowledge of the system dynamics,
controller design and utilized statistical detector. Our prob-
lem formulation satisfies the value existence conditions for
nonstationary games [10], and we show that the optimal
strategy for the system exists. A suboptimal algorithm is
also developed, based on robust game techniques [11] and the
finite horizon stationary stochastic game algorithm from [12].

The presented approach does not have to be constrained
to this scenario (i.e., replay attacks, two controllers); it is
possible to generalize our analysis, especially the quantifica-
tion approach, for any system with multiple finite cost, time-
invariant linear controllers/estimators/failure or intrusion de-
tectors, facing different attacks. In this case, the system will
choose from the library of control, estimation or detection
methods under the uncertainty of attacker’s particular choice.

This paper is organized as follows. In Section II, we
present the system and replay attack model, and describe the
control problem. In Section III, we formulate and quantify
the nonstationary, zero-sum stochastic game between the sys-
tem and the attacker. The existence of the system’s optimal
strategy is shown, followed by a suboptimal value iterative
algorithm in Section IV. On several examples, in Section V
we illustrate performance of the derived attack detection
scheme. Finally, Section VI provides concluding remarks.



II. CONTROL SYSTEM AND REPLAY ATTACK MODEL

Before presenting the game formulation, we first introduce
the system and attack models. We consider the setup from
Figure 1, where a Linear Time-Invariant (LTI) plant is
controlled by an LQR controller with a Kalman filter (acting
as a state estimator), and a χ2 detector that is used to detect
any abnormal behavior. After we describe each component
of the system, along with a model of replay attacks, we
introduce the problem of balancing the control performance
and detection rate.

LTI Plant: We consider LTI plants described as:
xk+1 =Axk + Buk + wk,

yk =Cxk + vk,
(1)

where xk ∈ Rn,uk ∈ Rp and yk ∈ Rm denote the plant’s
state, input and output vectors respectively, and wk and vk
denote process and measurement noise at time k. We assume
that wk ∼ N (0,Q), vk ∼ N (0,R), and x0 ∼ N (x̄0,Σ)
are independent and identically distributed (IID) Gaussian
random variables, and that the plant is detectable.

Kalman Filter: We assume the Kalman filter is already in
steady state, with parameter K and initial condition P = Σ.
Thus, the filter acts as a fixed-gain estimator of the form:

x̂0|−1 = x̄0,P = Σ,K = PCT (CPCT + R)−1,

x̂k|k = x̂k|k−1 + K(yk −Cx̂k|k−1),

x̂k+1|k = Ax̂k|k + Buk.

(2)

Optimal LQG Controller: Using the state estimation x̂k|k,
the controller acts as a fixed gain compensator of the form
u = u∗k = Lx̂k|k, where L , −(BTSB+U)−1BTSA, and
S is the solution of the Riccati equation:
S = ATSA + W −ATSB(BTSB + U)−1BTSA, (3)

for some W,U � 0. Thus, u∗k satisfies:

u∗k = arg min
uk

lim
T→∞

E
1

T
[

T−1∑
k=0

(xTkWxk + uTkUuk)] (4)

χ2 Detector: For the described system, the Kalman filter
residues zi = yi−Cx̂i|i−1 are IID with Gaussian distribution
N (0,P), where P = CPCT + R. Therefore, at each time
k, χ2 detector takes the form:

gk =

k∑
i=k−τ+1

(yi −Cx̂i|i−1)
TP−1(yi −Cx̂i|i−1) ≶ α. (5)
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Fig. 1. System diagram with only one controller, where replay attacks can
compromise sensor measurements delivered to the controller.

Here, τ is the detection window size and α is the alarm trig-
gering threshold. Both parameters are predefined to provide
a desired false alarm rate according to the distribution of gk.

Attacker Model for Replay Attacks: We assume the at-
tacker can record sensor measurements, choose the replay
window size T , and at each time-step decide whether to send
the correct or delayed plant outputs.1 Thus, data y′k (k ≥ 0)
received by the estimator and detector can be described as:

y′k =

{
yk, sensor output is not changed at k
yk−T , T > 0, replay attack occurs at k

(6)

If (A + BL)(I − KC) , A is stable, the χ2 detector is
useless, since the expectation of detector statistics for the
compromised residues z′k = yk−T −Cx̂k|k−1 will converge
to the same value as that for zk = yk −Cx̂k|k−1 [5]

lim
k→∞

E[(z′k)TP−1z′k] = lim
k→∞

E[(zk)TP−1zk] = m (7)

To increase the detection rate, an IID Gaussian signal
∆uk ∼ N (0,L) can be added to the optimal controller

uk = u∗k + ∆uk. (8)

With this uk, (7) for z′k will be m + 2trace(CTP−1CU),
where U satisfies U − BLBT = AUAT . On the other
hand, applying the additional input ∆u would increase the
quadratic cost to J ′ = J + trace[(U + BTSB)L], where J
denotes the optimal cost (for control input u∗k from (4)) [5].

The above analysis of control performance and detection
rate is over infinite time horizon. To balance the security
overhead and the control cost, we consider applying different
controllers according to the system dynamics in finite time.
Consequently, our goal is to design an optimal policy for
switching between the (cost) optimal controller (i.e., u∗k)
and the controller from (8) which allows for the detection
of replay attacks, as shown in Figure 2. To achieve this,
we frame the problem as a non-cooperative stochastic game
between the system and the attacker, since the system has
limited knowledge about the attacker’s decisions, while the
detector only provides a probabilistic detection rate of mali-
cious behavior.

III. STOCHASTIC GAME FORMULATION OF REPLAY
DETECTION

To obtain a switching control policy that minimizes the
expected cost for the considered closed-loop system, we for-
mulate a zero-sum finite horizon stochastic game between the

1It is worth noting here that when a replay attack occurs, values from all
sensors can be compromised.
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Fig. 2. Block diagram of the switching controller – Controller 1 is cost
optimal, while Controller 2 provides a higher attack detection rate.



system and the attacker. We consider K-stage games, where
each stage corresponds to n time-steps of the dynamical
model from (1). For simplicity, in this section we present
the case for n = 1, i.e., every game stage is also one time
step of the physical model. We denote the attacker as the
maximizer (the row player) and the system as the minimizer
(the column player) in the game. While each player is able
to observe the state of the game, neither player has exact
information about the other player’s previous behavior.

We assume that once the detector triggers the alarm, the
system stops its execution to check for malicious behavior.
In this case, if the attacker has been active it will be detected
and the system will remain safe, using only the optimal
controller in the future (i.e., the system wins). Otherwise,
the system pays a significantly large penalty for triggering
the false alarm.

Figure 3 illustrates the stochastic game model. The game
state space S is stationary. At each stage k, the nonstationary
parameters include action spaces for the attacker (Atk) and
system (Ask), the state transition probability matrix Pk,
and the immediate payoff matrix rk. We consider mixed
strategies Fk,Gk for both players. Formally, we define the
game as a sequence of tuples (S,Atk, Ask,Fk,Gk,Pk, rk),
k ∈ {1, · · · ,K}. Every parameter is quantified using the
system and attack model described in Section II.

1) Game State Space: S = {s1, s2, s3} denotes the set
of the stochastic game states. Absorbing state s1 = safe
describes that the system has already successfully detected a
replay attack; s2 = no detection specifies that the alarm has
not been triggered; finally, the system enters the state s3 =
false alarm trigger when the alarm is triggered before
attacks occur.

2) Attacker’s Action Space: At each stage k, the attacker
has M candidate actions, i.e., Atk = {a1k, · · · , aMk} =
{yk,yk−t2 , · · · ,yk−tM } is the attacker’s action space, where
yk is the real sensor value and yk−ti denotes the replay attack
with a window size ti.

3) System’s Action Space: Ask = {u1k, u2k} =
{u∗k,u∗k +∆uk} is the system’s action space facing a replay
attack at stage k. Here, u1k = u∗k is the cost optimal input,
while u2k = u∗k + ∆uk provides a higher detection rate.2

4) Mixed Strategy: Let f ik(s) and gjk(s) be the probabil-
ities that at stage k and state s the attacker and the system

2Note that if N > 2 controllers/estimators/detectors are used, the
system’s action space should be of size N and the method presented in
this paper could still be used.
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Fig. 3. Stochastic Game Model, s1 is an absorbing state.

chose actions aik ∈ Atk and ujk ∈ Ask, respectively. We
define Fk and Gk as the sets of strategies of the attacker
and the system at stage k:

Fk := {fk = [fk(s1), fk(s2), fk(s3)]| fk(s) ∈ RM ,∀s ∈ S,

f ik(s) ≥ 0,∀aik ∈ Atk,
∑
i

f ik(s) = 1},

Gk := {gk = [gk(s1),gk(s2),gk(s3)]| gk(s) ∈ R2,∀s ∈ S,

gjk(s) ≥ 0,∀ujk ∈ Ask,
∑
j

gjk(s) = 1},

We denote with Hk = H1F1G1 · · ·Fk−1Gk−1 the concate-
nation of the strategies until stage k, where H1 ⊆ S is the
initial state set, and each strategy history hk ∈ Hk can be
described as hk = h1f1g1 · · · fk−1gk−1 for h1 = sl.

5) State Transition Probability: Pk is the state transition
probability set at k, where P̃k ∈ Pk satisfies:

P̃k(s′|hk, s) = [P̃ ijk (s′|hk, s) ≥ 0] ∈ RM×2, s′, s ∈ S,∑
s′∈S

P̃ ijk (s′|hk, s) = 1,∀(aik, ujk) ∈ Atk ×Ask, s ∈ S.

Here, P̃ ijk (s′|hk, s) is the probability provided by the detector
(like χ2 detector), that the system transits from state s at
stage k to state s′ at stage k + 1, given a history hk ∈ Hk

and both players’ actions (aik, ujk).3

6) Immediate Payoff Function: We define the imme-
diate payoff matrix set at stage k as rk ⊆ RM×2, and
r̃k ∈ rk, where r̃k(hk, s) = [r̃ijk (hk, s) ≥ 0], denotes the
payoff of every action pair (aik, ujk) for strategy history
hk and state s. Given system state xk(hk) and control
input γk(hk, aik, ujk), similar to the LQG cost we have
r̃ijk (hk, sl) = r̃ijtk(hk, sl)(attacker) = −r̃ijsk(hk, sl)(system):

r̃ijk (hk, s1) = xTk (hk)Wxk(hk) + γTk (hk, a1k, ujk)Uγk(hk, a1k, ujk),

r̃ijk (hk, s2) = xTk (hk)Wxk(hk) + γTk (hk, aik, ujk)Uγk(hk, aik, ujk),

r̃ijk (ĥk, s3) = false alarm trigger penalty.

Note that at state s1 the system wins, so the payoff is
determined by real sensor data a1k = yk.

7) Control System Dynamics: With all the above def-
inition, for any strategy history hk, given the system and
attack models from Section II, we can obtain the expected
system behavior under the stochastic game formulation (for
simplicity we omit the E), which is used to compute the
expected payoff for different strategies (defined in the next
section). Given initial x̂1|0(h1) = x̄0, x1(h1) = x0, at each
stage k the LTI plant and Kalman Filter evolve as:

xk(hk) = Axk−1(hk−1) + Buk−1(hk) + wk−1,

a1k(hk) = yk(hk), aik(hk) = yk−ti(hk), i 6= 1,

x̂k|k(hk, aik) = x̂k|k−1(hk) + K(aik(hk)−Cx̂k|k−1(hk)),

x̂k+1|k(hk, aik, ujk) = Ax̂k|k(hk, aik) + Bγk(hk, aik, ujk).

To specify behavior of the χ2 Detector we define residues

zk+1(hk, aik, ujk) = aik(hk)−Cx̂k+1|k(hk, aik, ujk).

3Full description of the game formulation can be found at https://
sites.google.com/site/miaofeiatpenn/publications

https://sites.google.com/site/miaofeiatpenn/publications
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Then gk+1 used to extract the state transition probability is

gk+1(hk, aik, ujk) =

k∑
t=k−τ+2

[zt(ht)]
TP−1zt(ht)

+ [zk+1(hk, aik, ujk)]TP−1zk+1(hk, aik, ujk)

(9)

Updating the Model With Strategy At Stage k: If the
strategies at stage k are fk and gk, then hk+1 = hkfkgk.
Furthermore, let p(sl

′

k ) be the probability that the system is
at state sl′ at stage k (note that p(sl

′

1 ) is given). Then we
update the following parameters for stage k + 1:

uk(hk+1) =

2∑
j=1

M∑
i=1

3∑
l=1

p(slk)f ik(sl)g
j
k(sl)γk(hk, aik, ujk),

yk(hk+1) =

M∑
i=1

3∑
l=1

p(slk)f ik(sl)aik(hk),

and the probability of the system being at state sl′ at stage
k + 1 is:

p(sl
′

k+1) =

3∑
l=1

p(slk)[fk(sl)]
T P̃k(sl′ |hk, sl)gk(sl).

Therefore, when we involve the system dynamics to define
the game, the resulting formulation utilizes a nonstationary
immediate payoff matrix and a transition probability matrix.

IV. EXISTENCE OF AN OPTIMAL STRATEGY AND
SUBOPTIMAL ALGORITHM

Based on the game formulation, in this section we dis-
cuss the existence of an optimal solution for the system,
and present an algorithm to compute a suboptimal system
strategy.

A. Existence of the System’s Optimal Strategy

We define the concatenation of strategies for K-stage
game of each player (f for attacker and g for system) as

f = f1 · · · fK , fk ∈ Fk, g = g1 · · ·gK ,gk ∈ Gk.
Let the random variable ζk describe the state of the game
at stage k, and let us define the conditional expected total
payoff till K̃ for any f ,g, given initial state ζ1 = s as

RK̃(s, f ,g) =
K̃∑
k=1

3∑
l=1

p(ζk = sl|ζ1 = s)[fk(sl)]
T r̃k(hk, sl)gk(sl).

Since the immediate payoff satisfies 0 ≤ r̃ijk (hk, sl) <
∞, we have that RK̃(s, f ,g) is a nonnegative real-valued,
nondecreasing function with K̃. Furthermore, for finite K

RK(s, f ,g) <∞,∀s, f ,g. (10)

Definition 1 ([10]): A two-person zero-sum K-stage
stochastic game is said to have a value vector v∗K if

v∗K,s = vK,s = v̄K,s, for any s ∈ S, where

vK,s = sup
f

inf
g
RK(s, f ,g), v̄K,s = inf

g
sup
f
RK(s, f ,g).

For the finite value K-stage stochastic game, strategies
g∗ and f∗ are called optimal for player two (the system) and
player one (the attacker), respectively, if for all s ∈ S
v∗K,s = sup

f
RK(s, f ,g∗), v∗K,s = inf

g
RK(s, f∗,g).

The existence conditions of the value and optimal strate-
gies for a general finite horizon zero-sum nonstationary
stochastic game are shown in [10]. The game defined in
this paper has a finite state space, finite action spaces, and
satisfies (10). Therefore, using the same approach as in the
proofs from [10] we can prove the following theorem:

Theorem 1: There exists the value of the considered game
and an optimal strategy for the system.

B. Suboptimal Algorithm For the Nonstationary Game
Existing value iterative algorithms for stationary stochastic

games can not be used to solve our game, since the non-
stationary game parameters depend on the previous history,
which is only available in the future algorithm iterations.
Hence, we design a suboptimal algorithm based on the
value iteration method for finite horizon stationary stochastic
game from [12] and robust game techniques from [11].
Algorithm 1 provides an upper bound for the game value and
the corresponding nonstationary suboptimal strategy for the
system. The idea is to solve a robust game at each iteration
step – i.e., minimize the worst-case caused by extreme points
of the nonstationary payoff and state transition probability
polyhedra, or (rk,Pk), defined for all possible histories.

The value iteration algorithm for finite horizon stationary
stochastic game (with fixed payoff r and state transition
probability P at every stage) works in the way that if a
player knew how to play in the game optimally from the
next stage on, then, at the current stage, he would play
with such strategies [12]. The value of K-stage game is
finally provided by the last step of iteration. Similarly, the
Algorithm 1 of the nonstationary stochastic game starts from
the last stage, gets the matrix game value and the optimal
strategy related to nonstationary (rk,Pk) at each stage, and
returns an upper bound for the value of the total payoff in
K-stages. To estimate the values at each step, we consider
the payoff and state transition probability set (rk, Pk) as an
uncertain parameter set for the one shot robust game [11].

To quantify the bounded polyhedra (rk, Pk), we need
the expected system dynamics xk,uk, yk, k = 1, · · · ,K
defined in Section III-.7, which is determined by the strategy
history. The extreme points for the uncertain set (rk, Pk)
depend on pure strategy histories. Let Hp

k ⊂ Hk be the
concatenation of pure strategies until stage k, where a pure
history hpk ∈ Hp

k , hpk = s1f
p
1 g

p
1 · · · f

p
k−1g

p
k−1 satisfies that

all fpt (s), gpt (s) have only one non-zero element (i.e., they
choose the corresponding action or the pure strategy). By
using any hpk in the game model of Section III-.7, we get
the corresponding rpk(hpk, sl) and P pk (hpk, sl) for stages 1 to
K. Thus, the extreme points set (rkp,Pkp) for (rk,Pk) is:

{(rpk(hpk, sl), P
p
k (hpk, sl))| h

p
k ∈ H

p
k , l ∈ {1, 2, 3}}.

We define the pure strategy backup matrix set Qkp, k =
1, · · · ,K − 1 as:
Qkp = {Qpk(h

p
k, sl) = rpk(h

p
k, sl) +

∑
s′∈S

P pk (s
′|hpk, sl)v

s′
k+1(h

p
k+1)},

(11)

where vs
′

k+1(hpk+1) ≥ 0 is the robust game value resulting
from the iteration at stage k+ 1 of Algorithm 1, and relates



to matrix games defined by Q(k+1)p. In addition, we define
the backup matrix set Qk for all possible hk, as

Qk = {Q̃k(hk, sl) = r̃k(hk, sl) +
∑
s′∈S

P̃k(s
′|hk, sl)vs

′
k+1(h

p
k+1)}.

Finally, for the stage K we define QpK(hpK , sl) = rpK(hpK , sl)
and Q̃K(hK , sl) = r̃K(hK , sl).

Now, consider the iteration for calculating vslk (hpk) from
all matrix games Qpk(hpk, sl) ∈ Qkp in Algorithm 1. We
denote the non-pure history value of k as vslk (hpk−1), which
is calculated from the Q̃k(hk, sl) that have the same pure
strategies as hpk in all stages 1, · · · , k − 2, and any strategy
at stage k − 1. We use the following result to show that at
every k, vslk (hpk) is greater than or equal to vslk (hpk−1).

Theorem 2: Consider the value iteration for stage k as a
one shot robust game. Based on vs

′

k+1(hpk+1) ≥ 0 of previous
iteration, We define the robust game value obtained at k as

vslk (hpk) = max
Qp

k(h
p
k,sl)∈Qkp

v∗[Qpk(hpk, sl)], (12)

where v∗ is the function that yields the value of a zero-sum
matrix game. Then for k = 2, · · · ,K, vslk (hpk−1) is upper
bounded by vslk (hpk) (i.e., vslk (hpk−1) ≤ vslk (hpk)).

Proof: Since vs
′

k+1(hpk+1) is a nonnegative scalar, the
extreme points of Qk can only come from the extreme points
of the tuple (rk,Pk), i.e., by considering the matrix game
value of every Qpk(hpk, sl) defined in (11), we will get the
maximum value from extreme points of Qk. Now consider
the following optimization problem for the system (14) and
for any attacker’s strategy vector f

min
g

z (13)

subject to z ≥ max
Q̃k(hk,sl)∈Qk

fT [Q̃k(hk, sl)]g. (14)

As proven by Lemma 5 in [11], (14) is equivalent to the
following constraint that considers only the extreme points

z ≥ max
Qp

k(h
p
k,sl)∈Qkp

fT [Qpk(hpk, sl)]g, (15)

For the worst-case f , the above is also true. Hence, let

vslk (hpk) = max
Qp

k(h
p
k,sl)∈Qkp

min
g

max
f

fT [Qpk(hpk, sl)]g. (16)

For optimal policies f∗(hpk, sl) and g∗(hpk, sl), the above
optimization (16) results in cost max

Qp
k(h

p
k,sl)∈Qkp

v∗[Qpk(hpk, sl)].

However, (f∗(hpk, sl),g
∗(hpk, sl)) can be non-pure strategies,

meaning that when used in III-.7, they will not result in ex-
treme points of Qk+1. The non-pure history value vs

′

k+1(hpk)

of iteration for stage k+1 satisfies vs
′

k+1(hpk) ≤ vs′k+1(hpk+1).

Replacing vs
′

k+1(hpk+1) by vs
′

k+1(hpk) in (11) will decrease
every element in matrix Qpk, since rijk ≥ 0 and P ijk ≥ 0.
With a similar argument in the next iteration for stage k−1,
we have vslk (hpk−1) ≤ vslk (hpk).

According to Theorem 2, we use Algorithm 1 to compute
an upper bound of the value and the corresponding subop-
timal strategy for every step. The function π computes the
strategy and robust value as defined in (12). Note that for

Algorithm 1 : Suboptimal Algorithm for A Finite Non-
stationary Stochastic Game
Input: System model parameters and game parameters.
Initialization: Compute the set of (rkp,Pkp) for k = 1, ...K.
Compute the game at stage K: QpK(hpK , sl) = rpK(hpK , sl),
f∗(hpK , sl), g

∗(hpK , sl), v
sl
K(hpK)← π(QpK(hpK , sl).

Iteration: For k = (K − 1), · · · , 1,
get the backup matrix set Qkp for all hpk ∈ H

p
k , where each

matrix is defined in (11), then calculate:
f∗(hpk, sl), g

∗(hpk, sl), v
sl
k (hpk)← π(Qpk(hpk, sl)).

f∗k = [f∗(hpk, sl), l = 1, 2, 3], g∗k = [g∗(hpk, sl), l = 1, 2, 3].
Return: the strategy concatenation pair fa = f∗1 · · · f∗K ,ga =
g∗1 · · ·g∗K and the value upper bound vsl1 , l = 1, 2, 3.

the replay attacks considered in this paper, at state s1 the
system wins the game and replay is harmless. Thus, the
optimal strategies of s1 is gk(s1) =

[
1 0

]T
, fk(s1) =[

1 0 · · · 0
]T

. The nonstationary game values vslk (hpk−1)
and vslk (hpk) that result from value iteration of two strategies
only differ at stage k−1 (i.e., same and pure from stages 1 to
k− 2). By value iteration backward to stage 1, we compare
the game value (for all possible strategies) and the robust
game value vsl1 of Algorithm 1 in the following theorem.

Theorem 3: Algorithm 1 results in an upper bound vsl1
for the value of the K-stage game, together with suboptimal
strategies fa and ga.

Proof: The strategies fa,ga of Algorithm 1 are possibly
not pure. According to Theorem 2, vslk (hpk−1) ≤ vslk (hpk), and
the proof holds for every k = 2, · · · ,K. Consider the value
iteration for k = 1, with vsl2 (hp1) ≤ vsl2 (hp2),

Qij1 (h1, sl) = r̃ij1 (h1, sl) +
∑
s′∈S

P̃ ij1 (s′|h1, sl)vs
′

2 (hp1) ≤ Q
ij
1 (hp2, sl),

thus v∗[Q1(h1, sl)] ≤ vsl1 . Iterative value based on pure
strategy back up matrix sets Qkp, k = 1, · · · ,K obtained
from Algorithm 1 is an upper bound for the game value.

V. EXAMPLE

To illustrate our stochastic game approach, we consider
the four input four output system examined in Section 3.1
of [13]. We assume that the attacker’s action space (i.e., re-
play window size) contains t2 = 10, t3 = 20, t4 = 30, t5 =
40, and that the initial system state is s2 (i.e., p(s12) =
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Fig. 4. System’s suboptimal strategy at state s2 – the probability of
switching to Controller 2 at every stage.
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(a) Control cost comparison when the system ap-
plies different strategies; initial state is s2
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(b) Probability of system being at state s1 (safe,
already successfully detected a replay attack).
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(c) Control cost comparison when no replay oc-
curs; initial state is s2.

Fig. 5. Comparison on the system control cost and detection rate under different scenarios

1). Using Algorithm 1, we obtained a suboptimal system’s
strategy ga, for the K = 50-stage game. Figure 4 shows the
probability of switching to Controller 2 at every step.

We compare the system’s control cost in two cases, when
the system applies the suboptimal game strategy ga and
when it only uses Controller 2 (i.e., always adds noise by
applying input u∗k+∆uk at every step k); all plots presented
in this section are obtained by averaging results of 10000
simulations. In Figures 5(b) and 5(a), we present the system’s
total cost when the attacker does not follow the strategy fa
but rather replays previous sensor measurements with delay
of T = 25s, starting from time t = 26s. We compare two
strategies for the system, using Controller 2 in each step and
following the strategy ga. Figure 5(b) shows the probability
that the system is at state s1 (successfully detected a replay
attack) over time. These results illustrate that the suboptimal
system strategy ga results in a lower control cost compared to
the non-optimal Controller 2, although Controller 2 insures a
higher detection rate. Note that in regular operation modes,
when no attacks occur, it is inefficient to sacrifice control
performance at every time step. By switching controllers we
reduce the performance loss, as shown in Figure 5(c), while
being able to detect potential attacks.

Besides finding the optimal or suboptimal strategy, we can
also use the stochastic game framework to find the ‘best
reply’ strategy for a specific attacker behavior. For example,
the attacker’s strategy can be to always apply a certain type
of attack before being detected. When the computational
complexity of Algorithm 1 is high and we want a faster
iteration, we can calculate the best reply strategy with respect
to one attack type from the attack action space, run the
algorithm for a different action type each time, and find
the worst-case cost. This approximation is reasonable since
when we do not have expectation that a certain attack type
will appear, then our goal is to keep the system performance
acceptable under the worst-case attack type.

VI. CONCLUSION

In this paper, we have proposed the use of noncooperative
stochastic games to design a suboptimal switching control
policy that balances control performance with the intrusion
detection rate for replay attacks. We have presented the
detailed quantification process for the game parameters,

which utilizes knowledge of the system’s dynamics. To solve
the nonstationary stochastic game, we have developed a
suboptimal value iteration algorithm by considering each
iteration as a robust game. Note that the quantification
process and the proposed algorithm can be generalized and
applied for optimal design of LTI plants with finite number,
finite cost components facing attacks. In future, we will
explore the use of game theoretic methods to provide system
resiliency against other types of attacks, and revise the
presented algorithm to reduce its computational complexity.
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